

PO7B15 [KNS Spring Meeting 2025] May 21 (WED) ~ 23 (FRI), 2025, Jeju International Convention Center Performance Evaluation of Wireless Communication for Aerial Radiation **Detection Using a Multi-Channel Detector Mounted on a Drone** Sang Hun Shin^a*, Hee Kwon Ku^a, Min Beom Heo^a, Jae Wook Kim^a, Hyun Jin Boo^b and Byung Gi Park^b ^aFNC Technology Co., Ltd ^bSoonChunHyang University *Corresponding author: <u>ssh9431@fnctech.com</u>

- Challenge
- Rapid response to nuclear accidents demands early-stage, altitude-based radiation monitoring.
- Ground systems are limited in accessing wide or vertical radiation profiles.

Why UAVs?

- Drones offer high mobility and access to hazardous or unreachable zones.
- Ideal for real-time, altitude-resolved radiation assessment.
- Limitations of Conventional Systems
- Mostly single-channel detectors
- Manual spectrum interpretation
- Insufficient for fast-response, multi-source environments
- This Study Proposes
- Development of a drone-mounted, multi-channel radiation detection system using compact CZT spectrometers
- Integration of GPS for precise localization
- Evaluation of wireless communication (USB, LTE, Zigbee) for real-time data transfer
- **Objective**
- Identify the most reliable communication method for UAV-based radiation monitoring
- Enhance accuracy, resolution, and operational readiness in emergency scenarios

Experimental Setup and Results

[Detection System Components]

Component	Description
Multi-Channel Radiation Detector	Semiconductor-type CZT detectors (4 units) coupled with a compact MCA for simultaneous multi-point gamma detection and radionuclide identification. - Volume: 500 mm ³ - Resolution: FWHM 9.9±0.5 keV @ 662 keV - Room-temperature operation, small form factor
Drone Platform	Stable UAV platform with sufficient payload capacity to carry detection system. Equipped with GPS module and wireless modules for real-time transmission.
Wireless Communication Module	USB (wired), LTE, and Zigbee interfaces tested for transmission quality at ~10 m. LTE demonstrated the highest stability over distance with minimal data loss.

Main control cente

[Experimental Results (Co-60 isotope test)]

Comparison of Energy Spectra Using USB, Zigbee, and LTE Communication Methods

Measured energy spectrum of Co-60 peaks for LTE communication method

LTE communication ensures high-fidelity gamma spectrum transmission with minimal data loss, making it the most reliable method for drone-based radiation monitoring.

- Developed a drone-based, multi-channel radiation detection system for altitude-resolved airborne monitoring.
- Integrated USB, LTE, Zigbee communication modules for real-time data transmission evaluation.
- All methods were stable at short distances.
- LTE consistently outperformed Zigbee over extended ranges, maintaining >95% data integrity.
- Zigbee exhibited >20% data loss at 10 m, limiting its use in field conditions.

Future Works 20

- Optimize communication protocols for latency and robustness
- Minimize data loss under dynamic UAV operation
- Extend system integration for real-time emergency response and autonomous flight operations

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT). (No.2020M2D2A2062538)