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1. Introduction 

 
Computed tomography (CT) is a powerful non-

invasive technique for visualizing internal structures and 

has been widely utilized in the medical field. Recently, 

with the growing demand for industrial CT, various 

efforts have been made to adapt CT technology for 

industrial applications. However, conventional circular 

scanning methods often fail to guarantee sufficient image 

quality when faced with challenges such as artifacts from 

large or metallic objects. To overcome these limitations, 

a novel approach has been proposed that employs an x-

ray source and a detector mounted on robotic arms to 

perform three-dimensional scanning, along with several 

methods to optimize the scanning trajectory for high-

quality reconstruction of a volume of interest (VOI) [1-

2]. 

Traditional studies have primarily relied on pre-

existing CAD data or historical datasets to simulate 

scanning from all angles in three-dimensional space. 

These simulations involve calculating metrics such as 

detectability and transmittance from various angles to 

determine an optimal scanning trajectory for effective 

VOI reconstruction. However, these methods are limited 

in scenarios where pre-existing data is unavailable, the 

acquired projection image differs from simulated data, or 

when it is necessary to determine an optimal trajectory in 

real time with current projection image. 

In this study, we propose an approach that integrates 

the vision transformer (ViT) [3] with the dueling double 

deep Q-network architecture (DQN) [4-6]. This 

framework effectively fuses VOI-masked image 

information with projection images and employs 

reinforcement learning to learn the optimal scanning path 

autonomously. 
 

2. Methods and Materials 

 

2.1. CT system with dual robotic arms  

 

In this study, the CT system is configured with two 

robotic arms, each equipped with an x-ray source and a 

detector, and arranged to maintain a fixed distance from 

the target object while the x-ray source acquires 

projection images along a spherical coordinate system 

(𝜑𝑡: azimuthal angle, 𝜃𝑡: polar angle). Here, 𝑡 is defined 

as the projection angle index, and 𝜑𝑡 is defined as 𝜑𝑡 =
2(𝑡 − 1)∘ for 𝑡 ∈ {1,2, … ,180}, while 𝜃𝑡  denotes the 𝜃 

value at 𝑡. The objective is to train a network to select 

𝜃𝑡+1, which enables effective reconstruction of the VOI 

at 𝜑𝑡+1 using the projection image from (𝜑𝑡 , 𝜃𝑡). The 𝜃 

values are 45∘, 60∘, and 90∘, and the action (𝑎 ∈ 𝒜) is 

to choose one of these three 𝜃 values. The current state 

𝑠𝑡 is composed of four elements (𝑃𝑡 , 𝑀𝑡 , 𝜑𝑡 , 𝜃𝑡). The 𝑃𝑡 

is the projection image acquired at the (𝜑𝑡 , 𝜃𝑡) angles, 

and 𝑀𝑡 is a masking image produced by multiplying 𝑃𝑡 

with the projection result of only the VOI region at the 

same angle.  

For network training, a modified Shepp-Logan 

phantom with internal properties altered (e.g., aluminum, 

water, synthetic resin, etc.) was used, and the x-ray 

energy was set to 70 kV. To make an environment that 

hinders VOI reconstruction, the projection image of the 

two types of phantoms was used for training: the 

randomly beaded phantom (RB phantom), in which steel 

beads were randomly placed around the phantom as 

shown in Fig. 1(a), and the original phantom without 

beads as shown in Fig. 1(b). Our goal is to reconstruct 

the VOI of the RB phantom with high quality. For the 

RB phantom, the projection image corresponds to 𝜃 ∈
{45∘, 60∘, 90∘}, while the original phantom consists only 

of the projection image at 𝜃 = 90∘. 

 

2.2. Network structure and reinforcement learning  

 

In the network model, 𝜑  and 𝜃  are each passed 

through a linear layer to be transformed into high-

dimensional embeddings, which are then summed. This 

conditional embedding is added to 𝑃𝑡𝑜𝑘𝑒𝑛  and 𝑀𝑡𝑜𝑘𝑒𝑛 

with positional embedding applied, thereby reinforcing 

information about the angles at which the input images 

𝑃 and 𝑀 were acquired. The 𝑀𝑡𝑜𝑘𝑒𝑛 is used as the Query, 

while 𝑃𝑡𝑜𝑘𝑒𝑛 is used as the Key and Value in performing 

cross-attention. This is intended so that the 𝑀𝑡𝑜𝑘𝑒𝑛 , 

which contains information about the VOI, can reference 

 
 
Fig. 1. Two types of phantoms used in this study. The left 

(a) is the original phantom, and the right (b) is the randomly 

beaded phantom. 
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𝑃𝑡𝑜𝑘𝑒𝑛 as the key and value to avoid angles that would 

degrade the quality of the VOI. 

After converting the output of the Transformer into a 

one-dimensional vector, it is split into forms that yield 

the state value (𝑉) and the advantage (𝐴). Then, using the 

𝑉 and 𝐴, the Q-value is calculated for each action as in 

Eq. (1). 

𝑄𝑤(𝑠𝑡 , 𝑎𝑡) = 𝑉𝑤(𝑠𝑡) + (𝐴𝑤(𝑠𝑡, 𝑎𝑡) −
1

|𝒜|
∑ 𝐴𝑤(𝑠𝑡, 𝑎′)𝑎′∈𝒜 )  

(1) 

Based on double DQN, a target value (𝑦𝑡 ) is set as 

defined in Eq. (2), and the network parameters (𝑤) are 

trained. At the state (𝑠𝑡), the optimal action is estimated 

using the online network 𝑄𝑤 , and the Q-value for that 

action is retrieved from the target network 𝑄𝑤−. This Q-

value is then multiplied with the discount factor 𝛾 and 

summed with a reward (𝑟𝑡+1) to calculate the target value. 

The network is trained to minimize the difference 

between this target value and 𝑄𝑤(𝑠𝑡 , 𝑎𝑡). 

𝑦𝑡 = 𝑟𝑡+1 + 𝛾𝑄𝑤− (𝑠𝑡+1, argmax
𝑎′

𝑄𝑤(𝑆𝑡+1, 𝑎′))              (2) 

The reward was computed as follows. First, based on 

the Q-value, a next state (𝑃𝑡+1, 𝑀𝑡+1, 𝜑𝑡+1, 𝜃𝑡+1)  is 

determined. Then, the projection image of the original 

phantom at that angle is replaced with the projection 

image (𝑃𝑡+1) of the RB phantom at the same angle to 

reconstruct the VOI′. Next, the PSNR for each slice is 

calculated between the VOI′ and the VOI reconstructed 

using the original phantom’s projection images; the 

average of PSNR values is used as the reward. With this 

computation of the reward, the impact of the projection 

image obtained at (𝜑𝑡+1, 𝜃𝑡+1) produced by the network 

on the VOI can be evaluated, as shown in Fig. 2(a). 

Therefore, one might consider selecting the 𝜃𝑡  that 

results in a high PSNR at each 𝜑𝑡  to achieve a good 

reconstruction of the VOI. However, if all 𝜃 projection 

images at a given 𝜑𝑡 induce artifacts in the VOI as in Fig. 

2(a), the quality of the reconstructed image may 

deteriorate as Fig. 2(b). To resolve this issue, we 

employed a method that skips the corresponding 𝜑𝑡+1 if 

all 𝜃 values at that 𝜑𝑡+1 cause artifacts; Fig. 2(c) shows 

the result of this method. To mimic this in the network, 

in addition to outputting the state value function and 

advantage, the network is designed to output the 𝜑 angle 

to be skipped, and this is indirectly learned through the 

reward. 

 

3. Preliminary Results 

 

Fig. 3 demonstrates the reconstruction results of the 

original phantom (Fig. 3(a)) and the RB phantom (Fig. 

3(b-e)). Fig. 3(d) is the result of the conventional 

trajectory (𝜃 = 90°), which shows the worst result. Fig. 

3(b) and (c) are the reconstruction results of 𝜃 = 45° and 

60°. Fig. 3(e) is an image reconstructed from a network-

based optimized trajectory with 176 projection images. 

This VOI showed the best result in respect of SSIM (= 

0.89).  

 

4. Conclusion 

 

This study presents a method that combines the ViT 

with the dueling double DQN to optimize scanning 

trajectories. Preliminary results show that reinforcement 

learning may offer a practical solution for addressing 

challenges in CT trajectory optimization. The network 

will be validated with real experimental data obtained 

from a single-arm robot system that produces equivalent 

results to those originally implemented on a dual-

robotic-arm CT. 
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Fig. 2. (a) Reconstructed images reconstructed with FDK 

algorithm with original projection images except at the 

angle at 𝜑𝑡+1. At that specific angle, the projection image 

was replaced by the RB phantom’s projection at different 

𝜃  values—(a-1) 𝜃 = 45∘ , (a-2) 𝜃 = 60∘ , and (a-3) 𝜃 =
90∘ . (b) Reconstructed image using FDK with the 

projection at each 𝜑 chosen as the one yielding the highest 

PSNR among the 𝜃  values. (c) Improved reconstruction 

image achieved by excluding the problematic angle 𝜑𝑡+1 

when all 𝜃 causes artifacts. 

 
 
Fig. 3. (a) Reconstructed image from projection images of 

original phantom (𝜃 = 90°). (b-d) Reconstructed images 

from projection images of RB phantom (𝜃 = 45°, 60°,
90° ). (e) Reconstructed image from the network-based 

optimized trajectory. 
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