Assessment of LaBr₃:Ce and CeBr₃ scintillators for low-energy ⁵⁵Fe X-ray detection

Jae Hyung Park^a, Jinhong Kim^a, Siwon Song^a, Seunghyeon Kim^a, Sangjun Lee^a, and Bongsoo Lee^{b,*} ^aSchool of Energy Systems Engineering, Chung-Ang University, South Korea ^bRadiation Health Institute, Korea Hydro & Nuclear Power Co., Ltd., South Korea E-mail : sksdoe@cau.ac.kr, bongsoolee@khnp.co.kr^{*}

*Keywords : ⁵⁵Fe, LaBr₃:Ce, CeBr₃, significance, minimum detectable activity

1. Introduction

With the increasing decommissioning of aging nuclear power plants, attention has turned to the detection of radioactive aerosols generated during these processes. Among the prevalent radionuclides in decommissioning waste, ⁵⁵Fe is particularly significant due to its emission of low-energy (5.9 keV) X-rays, which contribute to radiation exposure risks [1-2]. Conventional ⁵⁵Fe detection methods, such as liquid scintillation counting and accelerator mass spectrometry, require complex chemical separation steps and are not suitable for field applications [3-4]. Given the widespread use of LaBr₃:Ce and CeBr₃ scintillators in gamma-ray spectroscopy, this study aims to compare their capabilities in detecting ⁵⁵Fe, considering the influence of intrinsic background radiation from ¹³⁸La.

2. Materials and methods

The study employed $1" \times 1"$ cylindrical LaBr₃:Ce and CeBr3 scintillators, manufactured by Epic Crystal, enclosed in aluminum housing with a 200 µm-thick beryllium window to enhance low-energy X-ray detection. A Hamamatsu H10828 photomultiplier tube (PMT) was used for light detection, with an optical pad (EJ-560, Eljen Technology) ensuring optimal transmission. The output signal was processed using a charge-sensitive preamplifier (CR-113, Cremat Inc.) and recorded via a digitizer (DT5725, CAEN). Experiments were conducted in a darkroom without additional radiation shielding. The detection efficiency and minimum detectable activity (MDA) were analyzed, and the significance method was applied to assess peak observability. The PMT bias voltage was set to -740 V for LaBr₃:Ce and -790 V for CeBr₃, with all measurements taken over a 1200-s duration.

digitizer DT5725 preamplifier CR-113

Fig. 1. The scintillator-PMT assembly configuration and the experimental setup.

3. Experimental results

Fig. 2 shows the intrinsic background spectra of LaBr₃:Ce and CeBr₃, as well as the pulse height spectrum obtained for the ⁵⁵Fe source. The ⁵⁵Fe source (4.077 μ Ci) was positioned 5 mm from the beryllium window of the scintillator, ensuring proper alignment with the detector. The comparison of spectra with and without the ⁵⁵Fe source revealed a distinctive 5.9 keV peak, which was confirmed by differentiating it from the 5.6 keV peak originating from ¹³⁸La decay in LaBr₃:Ce [5].

Fig. 2. Pulse height spectra of intrinsic background and ⁵⁵Fe collected with (a) LaBr₃:Ce and (b) CeBr₃.

Since real-world decommissioning sites often contain multiple radionuclides, simultaneous measurements of ⁵⁵Fe with ¹³⁷Cs and ⁶⁰Co were conducted to evaluate detector performance under multi-source conditions. As shown in Fig. 3, distinct differences emerge between measurements with and without the 55Fe source. The primary photopeaks, including the low-energy 5.9 keV peak, remain clearly identifiable across all experimental conditions, demonstrating that both LaBr3:Ce and CeBr3 scintillators are capable of simultaneous detection of low-energy radiation even in the presence of high-energy emitters. However, when measuring ¹³⁷Cs with CeBr₃, an additional peak appears around 10 keV, which causes distortion of the 5.9 keV peak. This feature is presumed to result from scattering or sum peaks associated with low-energy X-rays emitted by 137Cs.

Fig. 3. Energy spectra under multi-source conditions with $LaBr_3$: Ce and CeBr_3.

To evaluate the detection capability of LaBr₃:Ce and CeBr₃, the significance method introduced by Milbrath et al. was applied [6]. The significance (Sig_{quan}) is defined as:

(1)
$$Sig_{quan} = Net counts/Net error,$$

where the net error is given by:

(2) Net error
$$\approx \sqrt{Background + Gross area}$$

Table 1 presents a comparison of significance values for LaBr₃:Ce and CeBr₃ under identical conditions (1200 s measurement). The results indicate that LaBr₃:Ce exhibited higher significance values across all conditions. However, due to intrinsic background from ¹³⁸La decay (5.6 keV X-ray), this significance may be slightly overestimated. Additionally, the full width at half maximum (FWHM) of the 5.9 keV peak was found to be better for LaBr₃:Ce in most cases.

Table 1. Significance comparison for ⁵⁵Fe measurements.

Factor	LaBr ₃ :Ce			CeBr ₃		
	55Fe	55Fe, 137Cs	55Fe, 60Co	⁵⁵ Fe	⁵⁵ Fe, ¹³⁷ Cs	⁵⁵ Fe, ⁶⁰ Co
FWHM	2.37	2.38	2.55	2.63	1.51	2.57
Gross area	23224	34940	48143	19610	28671	45989
Net area	22448	25387	30027	18385	9236	24527
Background	776	9553	18116	1225	19435	21462
Error	154.92	210.93	257.41	144.34	219.33	259.71
Sig _{quan}	144.90	120.36	116.65	127.37	42.11	94.44

To assess the effect of intrinsic background, significance values were recalculated after background subtraction, as shown in Table 2. The recalculated significance (Sig) is defined as follows:

(3)
$$Sig = net counts / \sqrt{gross area}$$
.

The recalculated significance revealed that LaBr₃:Ce showed a notable decrease compared to its initial significance, confirming that its intrinsic background had contributed to its originally higher values. In contrast, CeBr₃ exhibited improved significance, particularly in the presence of ¹³⁷Cs, reducing the performance gap between the two scintillators. Despite this reduction, LaBr₃:Ce still maintained a slight advantage, particularly in simultaneous measurement scenarios. These results suggest that while CeBr₃ provides better sensitivity in low-background conditions, LaBr₃:Ce remains a more effective choice for field applications where multiple sources coexist.

 Table 2. Recalculated significance after background subtraction.

Factor		LaBr3:Ce			CeBr ₃	
	⁵⁵ Fe	⁵⁵ Fe, ¹³⁷ Cs	55Fe, 60Co	55Fe	⁵⁵ Fe, ¹³⁷ Cs	⁵⁵ Fe, ⁶⁰ Co
Gross area	23224	34940	48143	19610	28671	45989
Net area	19951	16413	19046	18576	14057	17068
Background	3273	18527	29097	1034	14614	28921
Sig	130.92	87.81	86.80	132.65	83.02	79.59

The minimum detectable activity (MDA) was calculated using the Currie method, where the MDA for peaked background scintillators (LaBr₃:Ce) is given by:

(4)
$$MDA_{peaked} = \frac{2.71+3.29\sqrt{B+B\cdot N/2m}}{\varepsilon \cdot p \cdot t}$$

and for non-peaked background scintillators (CeBr₃) is:

(5)
$$MDA_{non-peaked} = \frac{2.71+3.29\sqrt{2B}}{\varepsilon p \cdot t}$$

where *B* is the background count, ε is the detection efficiency, *p* is the emission probability, *t* is the measurement time, *N* is the number of channels in the ROI, and *m* is the number of channels used for background estimation [7-8].

Table 3 shows that LaBr₃:Ce demonstrated slightly higher detection efficiency than CeBr₃; however, due to its intrinsic background, it had a higher MDA, making CeBr₃ more sensitive for detecting weak ⁵⁵Fe activity. Since MDA decreases with extended measurement time, this limitation does not significantly impact long-term monitoring applications.

Table 3. Measurement capabilities of each scintillator for ${}^{55}\text{Ee}$

1 €.						
Factor	LaBr ₃ :Ce	CeBr ₃				
Measurement live time	1200 sec	1200 sec				
Detection efficiency	$4.04\text{E-}04 \pm 8.18\text{E-}05$	$3.77E-04 \pm 7.62E-05$				
MDA	1557 Bq	1134 Bq				

4. Conclusion

The study demonstrates that LaBr₃:Ce and CeBr₃ both effectively detect ⁵⁵Fe, with LaBr₃:Ce showing better detection capability despite its intrinsic background. The intrinsic background effect can be mitigated through

extended measurement times, making LaBr₃:Ce a viable option for long-term field applications. Given its lower cost and better simultaneous measurement performance with other radionuclides, LaBr₃:Ce is considered more suitable for portable radioactive aerosol monitoring systems in decommissioning sites. Future studies will focus on evaluating detection performance in real aerosol filter samples.

ACKNOWLEDGMENTS

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. RS-2024-00414355), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020M2D2A2062457).

REFERENCES

[1] Nakkyu Chae, Min-Ho Lee, Sungyeol Choi, Byung Gi Park, Jong-Soon Song, Aerodynamic diameter and radioactivity distributions of radioactive aerosols from activated metals cutting for nuclear power plant decommissioning, J. Hazard. Mater., 369 (2019) 727-745.

[2] IAEA, 1998. Radiological Characterization of Shut Down Nuclear Reactors for Decommissioning Purposes, Technical Reports Series No. 389, International Atomic Energy Agency.

[3] Silke Merchel, Georg Rugel, Johannes Lachner, Anton Wallner, Diana Walther, René Ziegenrücker, Evaluation of a sensitive, reasonable, and fast detection method for ⁵⁵Fe in steel, J. Radioanal. Nucl. Chem., 330 (2021) 727-735.

[4] Chan-Yeon Lee, Jong-Myoung Lim, Hyuncheol Kim, Da-Young Gam, A study on an optimized pretreatment method for the determination of ⁵⁵Fe and ⁶³Ni in decommissioning waste samples, J. Radioanal. Nucl. Chem., 332 (2023) 5185-5191.

[5] F. G. A. Quarati, I. V. Khodyuk, C. W. E. van Eijk, P. Quarati, P. Dorenbos, Study of ¹³⁸La radioactive decays using LaBr₃ scintillators, Nucl. Instrum. Methods Phys. Res. A, 683 (2012) 46-52.

[6] B. D. Milbrath, B. J. Choate, J. E. Fast, W. K. Hensley, R. T. Kouzes, J. E. Schweppe, Comparison of LaBr₃:Ce and NAI(Tl) scintillators for radio-isotope identification devices, Nucl. Instrum. Methods Phys. Res. A, 572 (2007) 774-784.

[7] Lloyd A. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Anal. Chem., 40 (1968) 586-593.

[8] L. Done, M-R. Ioan, Minimum Detectable Activity in gamma spectrometry and its use in low level activity measurements, Appl. Radiat. Isot., 114 (2016) 28-32.