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1. Introduction 

 
The method of characteristics (MOC) has established 

itself as a powerful approach for solving neutron 
transport equations, balancing high accuracy with 
computational efficiency. MOC-based codes such as 
nTRACER [1], OpenMOC [2], and MPACT [3] have 
emerged as viable alternatives to Monte Carlo methods, 
offering deterministic solutions while significantly 
reducing computational costs. However, large-scale 
reactor simulations using MOC remain demanding, 
particularly in full-core 3D modeling. With the 
increasing adoption of Graphics Processing Unit (GPU) 
acceleration in scientific computing, MOC solvers have 
become prime candidates for performance optimization. 
Notably, nTRACER successfully integrated GPU 
acceleration into its 2D/1D MOC solver and extended it 
to depletion calculations [4][5], demonstrating 
substantial speedups. These advancements have 
underscored the potential of GPU-based transport 
solvers and motivated further development in this area. 

Expanding on this progress, we focus on GPU 
acceleration for our in-house code, STREAM, which 
employs a 2D/3D Diamond-Difference MOC solver [6]. 
This method enhances accuracy and stability compared 
to 2D/1D MOC approaches while optimizing memory 
and computational resource usage. Other attempts at 
GPU acceleration for similar solvers exist [7], but they 
often lack a direct and fair comparison with CPU 
implementations, making it difficult to quantify the true 
impact of GPU offloading. In this work, we report on 
the development status of the GPU-enabled version of 
STREAM3D. Compared to our previous work [8], we 
incorporate a GPU-accelerated Coarse Mesh Finite 
Difference (CMFD) solver to further enhance 
computational performance. By systematically 
comparing CPU and GPU implementations, we provide 
a comprehensive assessment of speedup and accuracy. 
Our study presents steady-state and depletion results, 
focusing on key reactor parameters and pin-wise power 
distributions. 

Building on previous developments in GPU 
acceleration, we aim to address several key challenges 
in STREAM3D-GPU. First, we ensure that our GPU 
implementation maintains numerical accuracy and 
consistency with the reference CPU-based STREAM3D 
solver. Second, we optimize the performance of both 
transport and CMFD solvers to maximize the 

computational benefits of GPU acceleration. Finally, we 
present a detailed evaluation of our approach through 
benchmark problems, comparing results against 
traditional CPU-based methods and assessing the 
overall impact on computational efficiency. 

The remainder of this paper is as follows: Section 2 
describes the methodology and implementation details 
of the GPU-accelerated CMFD solver, presents the 
results of steady-state simulations using a large 
pressurized water reactor depletion problem, and 
summarizes the findings in a discussion. Section 3 
provides conclusion remarks and topics for future work. 

 
2. Methods and Results 

 
2.1 GPU-enabled CMFD in STREAM3D-GPU 

 
Previous work on developing a GPU-enabled MOC 

solver has been reported earlier [8]. In this study, we 
introduce a GPU-enabled CMFD module. CMFD is 
used as the primary acceleration technology in 
STREAM and has been proven to be very efficient at 
improving the convergence speed of the main MOC 
solver [6]. CMFD consists of two levels: assembly-wise 
CMFD, and pin-wise CMFD. For both levels, neutron 
energy group and space condensation are required, 
which is one of the primary consumers in the overall 
process. One of the key changes in the GPU-enabled 
CMFD is the introduction of Jacobi iteration for the 
linear system solver. In STREAM3D, the CMFD solver 
employs Gauss-Seidel iterative methods with a Red-
Black planar scheme for parallelization, which does not 
allow sufficient GPU parallelization. 
Before starting the CMFD offloading to GPU, we 
observed that it was not accelerated much in other 
GPU-enabled codes [5]. We associate this with a few 
possible factors: small problem size, which may 
amplify the time required to launch GPU kernels and 
update memory; reliance on double precision (DP), 
which could penalize GPU-enabled codes due to an 
insufficient number of DP cores in modern consumer-
grade or even workstation-level GPUs. Regardless of 
the exact reasons, we attempted to mitigate possible 
challenges for porting our CMFD code to GPU by 
following a newly developed scheme shown in Fig. 1. 
To ensure the maximal utilization of CUDA cores, we 
converted all CMFD-related data to single precision. 
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Fig. 1. GPU-enabled CMFD implementation scheme. 
 
In Fig. 1, green boxes are fully executed in GPU, 
whereas blue boxes utilize CPU. The pink box uses 
both CPU and GPU code. 
 
2.2 Depletion Results 
 

For a depletion simulation, we used an OPR-1000 
octant-core problem [9] with thermal-hydraulic 
feedback, and we modeled 30 burnup steps for both 
code cases. The first case is our previous version of 
STREAM3D-GPU, in which the MOC solver was 

offloaded to GPU [8]. In that version, the CMFD solver 
was executed using CPU only, and was based on the 
CPU-optimized scheme. In the current study, we call it 
the reference since it was verified against a CPU 
version. The second case is the updated STREAM3D-
GPU code, with the CMFD improvements presented in 
this study. For brevity, we call it the candidate code in 
this study. The speedup that was achieved in the 
candidate version compared to the reference version is 
available in Fig. 2, and the comparison of core-wise pin 
powers for both versions is shown in Fig. 3-5.  

We used the same single node for both versions, 
meaning the hardware and the software were identical. 
The node comprises 64 CPU cores, 8 NVIDIA RTX 
A5000 24 GB cards, and 2 TB of DDR-4 memory. We 
opt for a single-node calculation since it is the most 
consumer-appealing option. Using multiple nodes often 
implies investing in a much larger, power—and space-
demanding, and eventually costly system. In both cases, 
GPUs communicated through the host side MPI due to 
the large size of the angular flux arrays that were to be 
synchronized between different MPI domains. 
OpenMPI in NVIDIA HPC SDK supports direct 
communication between GPUs via CUDA-aware MPI, 
but it was not used in STREAM3D-GPU. 

 

 
 
Fig. 2. 3D OPR-1000 octant-core, average speedup between 
the reference and the candidate STREAM3D-GPU code per 
burnup step. 
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Fig. 3. 3D OPR-1000 octant-core, 0.0 GWD/MTU, relative 
difference (RD, %) for pin power between the reference and 
the candidate STREAM3D-GPU code. 
 
 RD, % 

 
 
Fig. 4. 3D OPR-1000 octant-core, 1.5 GWD/MTU, relative 
difference (RD, %) for pin power between the reference and 
the candidate STREAM3D-GPU code. 
 

As shown in Fig. 2, the newly updated version of 
STREAM3D-GPU demonstrates a reasonable speedup 
compared to the previous code version. Accuracy-wise, 
STREAM3D-GPU does not display unusual deviations 
from the reference, which could be observed in Fig. 3-5. 
The keff and pin powers stayed within the expected 
margin for a drastically modified code executed on 
GPU. For all burnup steps, the difference in keff did not 
exceed 10 pcm, and the difference in each pin power 
did not exceed 0.09%. Such deviations are considered 
normal considering the changes introduced. When the 
code is converted to GPU, the order of operations 
changes, which affects the values of processed and 
accumulated data, especially as the CMFD module was 
converted to single precision. 

 
 RD, % 

 
 
Fig. 5. 3D OPR-1000 octant-core, 1.5 GWD/MTU, relative 
difference (RD, %) for pin burnup between the reference and 
the candidate STREAM3D-GPU code. 

 
 
2.3 Discussion 
 

One important observation could be made upon 
observing the Fig. 2 result. Despite using the same code 
in the modules other than the CMFD module, most of 
them consumed less time, while the depletion time 
stayed the same. The reason for that is the newly 
developed GPU-enabled CMFD module. CMFD is 
regarded as an efficient acceleration technique for the 
MOC solver, which means it can reduce the number of 
MOC iterations before reaching convergence. Since we 
modified the CMFD solution scheme, we got a minor 
improvement of convergence for some of observed 
problems. This results in having less MOC iterations 
per burnup step, and, consequently, a reduction of the 
time for the involved modules by 10-20%. Since the 
number of depletion steps did not change, the depletion 
module consumed the same amount of time. 

The average execution time per burnup step for the 
tested OPR-1000 octant-core was just 20 minutes while 
using one GPU node with 8 GPU cards. While it is 
expected that adding more computing nodes would 
reduce this time even further, there are compiler-related 
challenges to overcome due to nvfortran being 
noticeably slower for the CPU parts of the code than, 
for example, gfortran. As a result, while the GPU code 
is designed to be linearly scalable, the CPU routines 
could display worse improvements in performance. 
Further work is required to determine the compiler-
specific CPU bottlenecks. 

The effect of developing the GPU-enabled CMFD 
code was expected to be less than it was achieved in 
this study. We attribute the positive changes with 
several factors: converting the data to single precision, 
redesigning the CMFD module to make it more 
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optimized for GPU (changing the Gauss-Seidel scheme 
to Jacobi scheme). 

 
 

3. Conclusions 
 

This study presents an updated version of our GPU-
enabled deterministic neutron transport code 
STREAM3D-GPU. Compared to previous versions, a 
GPU version of the CMFD solver was developed and 
incorporated into the code. The testing results 
demonstrate a noticeable speedup of the solver 
compared to a 64-core CPU version, whereas the 
accuracy of the code was not compromised and stayed 
on par with the original code. A single node calculation 
for OPR-1000 octant-core depletion problem was 
observed to take only 20 minutes per burnup step. 

Further work on STREAM3D-GPU includes porting 
the cross-section processing routines and depletion 
routines to GPU. 
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