
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22-23, 2025

Recent Advances in the Development of the GPU-Enabled Code STREAM3D-GPU

Siarhei Dzianisau a, Fathurrahman Setiawan a, Deokjung Lee a, b *
aDepartment of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan,

44919
bAdvanced Nuclear Technology and Services, 406-21 Jonga-ro, Jung-gu, Ulsan, 44429, Republic of Korea

*Corresponding author: deokjung@unist.ac.kr

*Keywords: neutron transport, CMFD, GPU, OpenACC

1. Introduction

The method of characteristics (MOC) has established

itself as a powerful approach for solving neutron
transport equations, balancing high accuracy with
computational efficiency. MOC-based codes such as
nTRACER [1], OpenMOC [2], and MPACT [3] have
emerged as viable alternatives to Monte Carlo methods,
offering deterministic solutions while significantly
reducing computational costs. However, large-scale
reactor simulations using MOC remain demanding,
particularly in full-core 3D modeling. With the
increasing adoption of Graphics Processing Unit (GPU)
acceleration in scientific computing, MOC solvers have
become prime candidates for performance optimization.
Notably, nTRACER successfully integrated GPU
acceleration into its 2D/1D MOC solver and extended it
to depletion calculations [4][5], demonstrating
substantial speedups. These advancements have
underscored the potential of GPU-based transport
solvers and motivated further development in this area.

Expanding on this progress, we focus on GPU
acceleration for our in-house code, STREAM, which
employs a 2D/3D Diamond-Difference MOC solver [6].
This method enhances accuracy and stability compared
to 2D/1D MOC approaches while optimizing memory
and computational resource usage. Other attempts at
GPU acceleration for similar solvers exist [7], but they
often lack a direct and fair comparison with CPU
implementations, making it difficult to quantify the true
impact of GPU offloading. In this work, we report on
the development status of the GPU-enabled version of
STREAM3D. Compared to our previous work [8], we
incorporate a GPU-accelerated Coarse Mesh Finite
Difference (CMFD) solver to further enhance
computational performance. By systematically
comparing CPU and GPU implementations, we provide
a comprehensive assessment of speedup and accuracy.
Our study presents steady-state and depletion results,
focusing on key reactor parameters and pin-wise power
distributions.

Building on previous developments in GPU
acceleration, we aim to address several key challenges
in STREAM3D-GPU. First, we ensure that our GPU
implementation maintains numerical accuracy and
consistency with the reference CPU-based STREAM3D
solver. Second, we optimize the performance of both
transport and CMFD solvers to maximize the

computational benefits of GPU acceleration. Finally, we
present a detailed evaluation of our approach through
benchmark problems, comparing results against
traditional CPU-based methods and assessing the
overall impact on computational efficiency.

The remainder of this paper is as follows: Section 2
describes the methodology and implementation details
of the GPU-accelerated CMFD solver, presents the
results of steady-state simulations using a large
pressurized water reactor depletion problem, and
summarizes the findings in a discussion. Section 3
provides conclusion remarks and topics for future work.

2. Methods and Results

2.1 GPU-enabled CMFD in STREAM3D-GPU

Previous work on developing a GPU-enabled MOC

solver has been reported earlier [8]. In this study, we
introduce a GPU-enabled CMFD module. CMFD is
used as the primary acceleration technology in
STREAM and has been proven to be very efficient at
improving the convergence speed of the main MOC
solver [6]. CMFD consists of two levels: assembly-wise
CMFD, and pin-wise CMFD. For both levels, neutron
energy group and space condensation are required,
which is one of the primary consumers in the overall
process. One of the key changes in the GPU-enabled
CMFD is the introduction of Jacobi iteration for the
linear system solver. In STREAM3D, the CMFD solver
employs Gauss-Seidel iterative methods with a Red-
Black planar scheme for parallelization, which does not
allow sufficient GPU parallelization.
Before starting the CMFD offloading to GPU, we
observed that it was not accelerated much in other
GPU-enabled codes [5]. We associate this with a few
possible factors: small problem size, which may
amplify the time required to launch GPU kernels and
update memory; reliance on double precision (DP),
which could penalize GPU-enabled codes due to an
insufficient number of DP cores in modern consumer-
grade or even workstation-level GPUs. Regardless of
the exact reasons, we attempted to mitigate possible
challenges for porting our CMFD code to GPU by
following a newly developed scheme shown in Fig. 1.
To ensure the maximal utilization of CUDA cores, we
converted all CMFD-related data to single precision.

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22-23, 2025

Fig. 1. GPU-enabled CMFD implementation scheme.

In Fig. 1, green boxes are fully executed in GPU,
whereas blue boxes utilize CPU. The pink box uses
both CPU and GPU code.

2.2 Depletion Results

For a depletion simulation, we used an OPR-1000
octant-core problem [9] with thermal-hydraulic
feedback, and we modeled 30 burnup steps for both
code cases. The first case is our previous version of
STREAM3D-GPU, in which the MOC solver was

offloaded to GPU [8]. In that version, the CMFD solver
was executed using CPU only, and was based on the
CPU-optimized scheme. In the current study, we call it
the reference since it was verified against a CPU
version. The second case is the updated STREAM3D-
GPU code, with the CMFD improvements presented in
this study. For brevity, we call it the candidate code in
this study. The speedup that was achieved in the
candidate version compared to the reference version is
available in Fig. 2, and the comparison of core-wise pin
powers for both versions is shown in Fig. 3-5.

We used the same single node for both versions,
meaning the hardware and the software were identical.
The node comprises 64 CPU cores, 8 NVIDIA RTX
A5000 24 GB cards, and 2 TB of DDR-4 memory. We
opt for a single-node calculation since it is the most
consumer-appealing option. Using multiple nodes often
implies investing in a much larger, power—and space-
demanding, and eventually costly system. In both cases,
GPUs communicated through the host side MPI due to
the large size of the angular flux arrays that were to be
synchronized between different MPI domains.
OpenMPI in NVIDIA HPC SDK supports direct
communication between GPUs via CUDA-aware MPI,
but it was not used in STREAM3D-GPU.

Fig. 2. 3D OPR-1000 octant-core, average speedup between
the reference and the candidate STREAM3D-GPU code per
burnup step.

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22-23, 2025

 RD, %

Fig. 3. 3D OPR-1000 octant-core, 0.0 GWD/MTU, relative
difference (RD, %) for pin power between the reference and
the candidate STREAM3D-GPU code.

 RD, %

Fig. 4. 3D OPR-1000 octant-core, 1.5 GWD/MTU, relative
difference (RD, %) for pin power between the reference and
the candidate STREAM3D-GPU code.

As shown in Fig. 2, the newly updated version of
STREAM3D-GPU demonstrates a reasonable speedup
compared to the previous code version. Accuracy-wise,
STREAM3D-GPU does not display unusual deviations
from the reference, which could be observed in Fig. 3-5.
The keff and pin powers stayed within the expected
margin for a drastically modified code executed on
GPU. For all burnup steps, the difference in keff did not
exceed 10 pcm, and the difference in each pin power
did not exceed 0.09%. Such deviations are considered
normal considering the changes introduced. When the
code is converted to GPU, the order of operations
changes, which affects the values of processed and
accumulated data, especially as the CMFD module was
converted to single precision.

 RD, %

Fig. 5. 3D OPR-1000 octant-core, 1.5 GWD/MTU, relative
difference (RD, %) for pin burnup between the reference and
the candidate STREAM3D-GPU code.

2.3 Discussion

One important observation could be made upon
observing the Fig. 2 result. Despite using the same code
in the modules other than the CMFD module, most of
them consumed less time, while the depletion time
stayed the same. The reason for that is the newly
developed GPU-enabled CMFD module. CMFD is
regarded as an efficient acceleration technique for the
MOC solver, which means it can reduce the number of
MOC iterations before reaching convergence. Since we
modified the CMFD solution scheme, we got a minor
improvement of convergence for some of observed
problems. This results in having less MOC iterations
per burnup step, and, consequently, a reduction of the
time for the involved modules by 10-20%. Since the
number of depletion steps did not change, the depletion
module consumed the same amount of time.

The average execution time per burnup step for the
tested OPR-1000 octant-core was just 20 minutes while
using one GPU node with 8 GPU cards. While it is
expected that adding more computing nodes would
reduce this time even further, there are compiler-related
challenges to overcome due to nvfortran being
noticeably slower for the CPU parts of the code than,
for example, gfortran. As a result, while the GPU code
is designed to be linearly scalable, the CPU routines
could display worse improvements in performance.
Further work is required to determine the compiler-
specific CPU bottlenecks.

The effect of developing the GPU-enabled CMFD
code was expected to be less than it was achieved in
this study. We attribute the positive changes with
several factors: converting the data to single precision,
redesigning the CMFD module to make it more

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22-23, 2025

optimized for GPU (changing the Gauss-Seidel scheme
to Jacobi scheme).

3. Conclusions

This study presents an updated version of our GPU-
enabled deterministic neutron transport code
STREAM3D-GPU. Compared to previous versions, a
GPU version of the CMFD solver was developed and
incorporated into the code. The testing results
demonstrate a noticeable speedup of the solver
compared to a 64-core CPU version, whereas the
accuracy of the code was not compromised and stayed
on par with the original code. A single node calculation
for OPR-1000 octant-core depletion problem was
observed to take only 20 minutes per burnup step.

Further work on STREAM3D-GPU includes porting
the cross-section processing routines and depletion
routines to GPU.

Acknowledgment

This work was supported by the Innovative Small
Modular Reactor Development Agency grant funded by
the Korea Government (MOTIE) (No.RS-2024-
00407975).

REFERENCES

[1] Y. S. Jung, C. B. Shim, C. H. Lim, H. G. Joo, Practical
Numerical Reactor Employing Direct Whole Core Neutron
Transport and Subchannel Thermal/Hydraulic Solvers, Annals
of Nuclear Energy, Vol. 62, Pages 357-374, 2013.
[2] W. Boyd, S. Shaner, et al., The OpenMOC Method of
Characteristics Neutral Particle Transport Code, Annals of
Nuclear Energy, Vol. 68, Pages 43-52, 2014.
[3] B. Collins, S. Stimpson, et al., Stability and Accuracy of
3D Neutron Transport Simulations using the 2D/1D Method
in MPACT, Journal of Computational Physics, Vol. 326,
Pages 612-628, 2016.
[4] N. Choi, J. Kang, H. G. Lee, H. G. Joo, Practical
Acceleration of Direct Whole-Core Calculation Employing
Graphics Processing Units, Progress in Nuclear Energy,Vol.
133, 103631, 2021.
[5] H. G. Lee, K. M. Kim, H. G. Joo, Development of
Scalable GPU-Based Direct Whole-Core Depletion
Calculation Methods, Progress in Nuclear Energy, Vol. 165,
104928, 2023.
[6] S. Choi, D. Lee, Three-Dimensional Method of
Characteristics/Diamond-Difference Transport Analysis
Method in STREAM for Whole-core Neutron Transport
Calculation, Computer Physics Communications, Vol. 260,
107332, 2021.
[7] A. Zhang, M. Dai, et.al., Development of A GPU-Based
Three-Dimensional Neutron Transport Code, Annals of
Nuclear Energy, Vol. 174, 109156, 2022.
[8] S. Dzianisau, D. Lee, “GPU Acceleration of 3D MOC
Solver in STREAM3D Using OpenACC,” KNS Spring
Meeting, Jeju, South Korea, May 9-10, 2024.
[9] H. Kim, A. Cherezov, et. al., Multi-Cycle Analysis of
OPR1000 Using Multi-Physics Coupled Codes of RAST-K,
CTF and FRAPCON, Proceedings of American Nuclear

Society Mathematics & Computation 2019, Oregon USA,
August 25-29, 2019.

