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1. Introduction 

 
Low-Enriched Uranium Plus (LEU+) is an attractive 

candidate for improving the fuel economics of Small 

Modular Reactor (SMR). [1] For LEU+ core design, the 

existing nuclear core design code system must analyze 

this system accurately. Previous study has shown that the 

existing design code analyzes low-enrichment systems 

with relatively good accuracy, but the error gradually 

increases at the high-enrichment systems as the 

enrichment rises. [2] This indicates a necessity for a 

multi-group neutron cross section library optimized for 

LEU+ core design. 

Recently, Kyung Hee University (KHU) has 

conducted studies to optimize a multi-group (MG) 

neutron cross section library for a user-defined target 

system, based on the KAERI (Korea Atomic Energy 

Research) library generation system [3-6]. This 

procedure is called by “library correction,” and it can be 

performed by selecting a reference model that can 

represent the user-defined target system and conducting 

iterative corrections for user-defined nuclides and 

reaction types. 

In this study, we will introduce error minimization 

strategies for MG cross section library correction system 

based on metaheuristic algorithms. Genetic algorithm 

(GA) [7] and Simulated Annealing (SA) algorithm [8] 

are considered, and each algorithm can optimize cross 

sections or reaction rates.  

To verify the library optimization performance of the 

proposed algorithms, soluble boron free (SBF) SMR 

benchmarks are conducted. This benchmark consists of 

single pin cell, 2D fuel assembly, and 2D core problems. 

To confirm the bias or error trends against 235U 

enrichment, the SBF SMR benchmark problems with 

enrichments ranging from 2 w/o to 10 w/o were 

considered. This benchmark matrix evaluates whether 

the suggested algorithms can optimize the cross section 

library across a wide range of problems. The reference 

Monte Carlo (MC) code used in this study is McCARD 

[9], and the MG core design code is DeCART2D. [10] 

 

2. DeCART2D Library Correction System 

 

Figure 1 illustrates a flowchart of the MG neutron 

cross section library correction process. 𝐷𝑒  represents 

the results from design code, DeCART2D, and 𝑀𝐶 

indicates the results from reference MC code, McCARD. 

𝑥  denotes the type of nuclear reaction, 𝑔 refers to the 

energy group, and 𝑇  denotes the temperature point of 

nuclide.  

 

 
Fig. 1. Flowchart of DeCART2D library correction process 

 

The processes including correction factor generation 

and updating the cross section library is defined as one 

round. Typically, the library correction process involves 

multi-round correction procedures. In the library 

correction process, the user can determine the following 

correction options. 

 

a. Reference model for generating correction factor 

b. Target nuclides for each round 

c. Cross section type (𝝈𝒙) for each nuclide 

 

The reference model usually can be chosen to 

represent the target benchmark system (e.g., Fuel 

assembly model that presents the core average reactivity). 

Once the nuclides to be corrected for each round are 

determined, the user selects the cross sections to be 

corrected for each nuclide in each round. Absorption, 

fission and scattering cross sections are considered.  
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3. Metaheuristic Algorithms 

 

3.1 Genetic Algorithm (GA) 

 

In this study, GA transforms the correction options 

into a genetic format and evolves each genome according 

to genetic operators; selection, crossover, and mutation. 

It samples round-wise, nuclide-wise user-defined 

correction options within the given correction round. 

 

 
Fig. 2. Description of genome format and genetic operator of 

GA optimization 

 

Figure 2 illustrates the genome format and genetic 

operators used for GA optimization in this study. Each 

individual (genome) consists of data for the reference 

model, user-defined nuclide groups, and round-wise 

correction options.  

In this study, the selection operator adds the highest 

fitness individual from the current generation to the next 

generation. The crossover operator generates new 

individuals by mixing the genes of the top and bottom 

individuals for the 70% of the entire population. The 

remaining individuals are all generated using the 

mutation operator. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
1

𝑅𝑀𝑆𝑡

× 105,     𝑅𝑀𝑆𝑡 =
∑ 𝑤𝑖𝑅𝑖

𝑗
𝑖

∑ 𝑤𝑖
𝑗
𝑖

(1) 

 

Fitness of each individual is calculated by (1). 𝑤𝑖  is the 

user-defined weight for the ith unit benchmark, 𝑅𝑖 is the 

RMS error for the ith unit benchmark. 𝑅𝑀𝑆𝑡  is a 

weighted average of all RMS errors of unit benchmarks. 

Figure 3 shows the flowchart of library optimization 

using GA. 

 

3.2 Simulated Annealing (SA) Algorithm  

 

In this study, SA perturbs the design parameters of the 

correction reference model. This includes adjustment of 

the enrichment of fuel pin, pin pitch, and other design 

parameters.  

 

𝑆𝑐𝑜𝑟𝑒 =
1

𝑅𝑀𝑆𝑡

× 105 (2) 

 
Fig. 3. Flowchart of GA optimization 

 

SA Score evaluation shown in (2) is structurally same 

with the GA fitness. If the score is better than previous 

trial, the temperature is decreased by the cooling rate and 

SA prepares the perturbation for next trial.  

 

𝑃𝑎𝑐𝑐𝑒𝑝𝑡 = exp [−
𝛥𝐸

𝑇
] (3) 

 

If the score is acceptably bad, the probabilistic 

acceptance logic shown in (3) is applied. This logic is for 

escaping local solution. Figure 4 shows the flowchart of 

library optimization using SA algorithm. 

 
Fig. 4. Flowchart of SA optimization 
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4. Optimization of Multi-group Cross Section 

Libraries by Metaheuristic Algorithms 

 

4.1 SBF SMR Benchmark  

 

To evaluate the library optimization performance of 

the proposed algorithms, SBF SMR benchmark system 

is organized. The considered SBF SMR uses enriched 

gadolinium as a burnable absorber and stainless steel 

(SS304) as a reflector. Figure 5 and 6 shows the 

modeling of the SMR fuel assembly and core. The 

benchmark problem includes single pin cell, 2D 

assembly, and 2D core problems with enrichments of 2, 

4, 6, 8, and 10 w/o. This evaluates whether the proposed 

algorithms can globally optimize various problem 

geometries and enrichment conditions, including LEU 

and LEU+ system. The McCARD reference solution is 

calculated based on ENDF/B-VII.1 library. Table I 

shows the description of the SMR benchmark problem 

conditions. 

 

Table I. Description of SMR benchmark problem 

Problem Description 

Single pin 

(5 problems) 

5 enrichments (2, 4, 6, 8, 10 w/o) 

2D assembly 

(25 problems) 

5 enrichments (2, 4, 6, 8, 10 w/o) 

5 assemblies (A01, A02, A03, A04, A05) 

2D core 

(5 problems) 

5 enrichments (2, 4, 6, 8, 10 w/o) 

*  Standard deviation of McCARD solution ≈ ±0.00007 

** Temperature condition: Fuel 900K, Clad 600K, Moderator 600K 

 

 
Fig. 5. Fuel assembly modeling for SBF SMR benchmark 

 

 
Fig. 6. Core modeling for SBF SMR benchmark 

 

The generated MG cross section library is based on the 

ENDF/B-VII.1 library and has 47 group for neutron, and 

18 group structure for gamma data. Total 4 rounds of 

correction were considered, and the main nuclides of the 

reactor (U, Gd, H) are corrected for absorption, fission 

and scattering cross section. 

 

4.2 GA optimization  

 

For GA optimization, 30 generations of iterations were 

conducted. Each generation consists of 5 genomes, with 

each genome containing the correction options for 4 

rounds with 3 nuclide groups. The nuclide groups are as 

follows: 

 

a. 235U, 238U 

b. 154Gd, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd 

c. 1H 

 

Table II. GA genome data for initial generation  

No 
Gene 

REF ABS/FIS SCT 

1 A01 1111 1111 1111 0000 0000 1111 

2 A02 1111 1111 1111 0000 0000 1111 

3 A03 1111 1111 1111 0000 0000 1111 

4 A04 1111 1111 1111 0000 0000 1111 

5 A05 1111 1111 1111 0000 0000 1111 

* REF, ABS/FIS, and SCT indicate reference model candidate, 
correction option for absorption/fission cross section, and correction 

option for scattering cross section. 

 

In this study, the reference model candidates for GA 

optimization are the A01, A02, A03, A04, and A05 fuel 

assemblies from the SMR benchmark using 4.0 w/o UO2 

fuel. Table II presents the initial genetic seed for GA 

optimization.  

Gene value ‘1’ indicates that a correction has been 

performed in a single round, while ‘0’ means that the 

correction has not been performed. The digit of the gene 

cluster(e.g., 4 digits of “1111”) means the total number 

of rounds, and the genes consist of gene clusters arranged 

in the order of nuclide groups. The genes in Table II 
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mean 4 rounds of absorption and fission cross section 

correction for three nuclide groups (a, b, c), while the 

scattering cross section is corrected only for the third 

nuclide group (c. 1H) over the same four rounds. 

 
Fig. 7. RMS error changes for pin, 2D assembly, and 2D core 

problems over 30 GA generations 

 

Figure 7 shows the result of GA optimization over 

generations. The highest fitness score for the initial 

generation of GA optimization is 991 points. The fitness 

improved to 4,116 points in 30 generations. While the 

initial maximum RMS error is over 100 pcm, RMS errors 

for all system geometries are converged to within 25 pcm 

in the final generation. The GA optimized the MG library 

to solve benchmark problems accurately. 

Table III presents the genome data of the highest 

fitness individuals for representative generations. The 

genetic operators (selection, crossover and mutation) are 

working well, and the optimal reference model and 

round-wise correction options were adjusted. 

 

Table III. GA genome data changes in representative 

generations 

GEN 
Gene 

Fitness 
REF ABS/SCT SCT 

1 A03 1111 1111 1111 0000 0000 1111 991 

10 A01 1011 0110 1101 0001 0000 1101 1299 

15 A05 1011 1101 1000 0000 0011 1001 2031 

20 A05 1110 0001 0100 1100 1111 0000 3666 

30 A05 1110 1001 0100 1100 1111 0000 4116 

* GEN indicates generation. 

 

4.3 SA optimization  

 

For SA optimization, 70 trials of iterations were 

conducted. Each trial performs four rounds of corrections 

for same correction nuclides used in the GA optimization. 

The reference model is the A03 assembly. SA perturbs 

the UO2 enrichment and pin pitch of the reference model. 

Figure 8 shows the results of the SA optimization over 

70 trials. The initial score for the SA optimization was 

902 points and the score improved to 2,126 points in 70 

trials. During this process, the fuel enrichment was 

adjusted from an initial value of 4.00 w/o to 3.84582 w/o, 

and the pin pitch was an initial value of 1.26239 cm to 

1.29097 cm. The SA scores gradually improved over 

trials.  

Using 31 processors of Ryzen 9 7950X CPU, the GA 

took 100 hours for the fitness of 4,116, while the SA 

costed 140 hours for the score of 2,126 at the same 

computational environment. In terms of calculation 

results relative to time spent, the GA approach provides 

much more accurate and faster optimization result than 

SA. 

 

 

 
Fig. 8. Changes in RMS error for pin, 2D assembly, and 2D 

core problems over 70 SA trials (top) and changes in design 

parameter of correction reference model (bottom) 

 

 
Fig. 9. Reactivity difference for SBF SMR benchmark: GA 

optimized, SA optimized and traditional PWR library 

 

Figure 9 shows the differences in reactivity for the 

libraries optimized by each algorithm in the SMR 

benchmark. For comparison, traditional PWR library 

optimized for LEU system is plotted.  

With respect to various geometries and enrichment 

conditions, GA optimized library was calculated with a 

total RMS error of 27 pcm for 30 generations. In 

comparison, the SA method achieved an overall RMS 
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error of 46 pcm with 70 trials. Both algorithms provide 

results that are significantly more accurate than the 

traditional PWR library, which was calculated with an 

RMS error of 361 pcm. 

 

5. Conclusion 

 

In this study, new strategies for the MG cross section 

library optimization based on metaheuristic algorithms 

are introduced. The proposed GA and SA algorithms 

both demonstrate the capability to generate a globally 

optimal cross section library under various conditions 

(e.g., System geometry and 235U enrichment). Because 

the proposed SA show less computing time efficiency 

than the GA algorithm, it is necessary to improve the SA 

algorithm in the near future. Moreover, the optimized 

library corrections based on this metaheuristic algorithm 

will be applied to various SMR and Gen-VI reactor 

designs. 
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