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1. Introduction 

 
 In the event of a severe nuclear power plant accident, 

the ability to rapidly predict the progression of events and 

formulate an effective response is crucial for mitigation. 

Severe accidents exhibit complex, highly nonlinear 

behaviors, making accurate predictions inherently 

challenging. These complexities can lead to unforeseen 

interactions and cascading failures, as demonstrated by 

historical incidents such as the Three Mile Island and 

Fukushima accidents. The unpredictable nature of such 

events necessitates advanced predictive methodologies 

to enhance situational awareness and decision-making. 

 

To address these challenges, artificial neural networks 

(ANNs) have been widely explored for predicting 

thermal-hydraulic variables in nuclear reactors. Previous 

studies have shown that adaptive radial basis function 

(RBF) neural networks offer superior fitting capabilities 

and forecasting accuracy compared to conventional 

methods, achieving a maximum error of just 0.5% under 

steady-state conditions [1]. Additionally, deep learning 

models such as long short-term memory (LSTM) 

networks have been utilized for predicting key nuclear 

power plant parameters, demonstrating strong potential 

in capturing complex dynamic behaviors [2]. 

 

    Further research utilizing MAAP-generated data has 

investigated the prediction of thermodynamic variables 

during severe accident scenarios using ANNs 

incorporating convolutional neural networks (CNNs), 

LSTMs, and hybrid architectures. In one study, 

LOCCW-based incident data were used to predict key 

thermal-hydraulic variables essential for Severe 

Accident Management Guidelines (SAMG) mitigation 

strategies. The results indicated a high recursive 

predictive capability, achieving a Mean Absolute Error 

(MAE) of approximately 0.05 in predicting 

hydrothermal variables [3]. In a subsequent study, 

predictive performance was further improved by 

transitioning from a conventional multi-input, multi-

output (MIMO) model to a multi-input, single-output 

(MISO) model [4]. This methodological shift resulted in 

a reduction of the Root Mean Square Error (RMSE) by 

up to 20.65% compared to the traditional MIMO model, 

highlighting the effectiveness of the MISO architecture 

in enhancing prediction accuracy for severe accident 

scenarios. 

 

 In this study, further improvements in predictive 

performance are pursued by refining the architecture of 

the artificial neural network (ANN). In the previous 

study, an ANN model composed of two stacked Long 

Short-Term Memory (LSTM) layers and a dense layer 

was used. In the current study, a branched path is 

introduced within the ANN, and its effect on 

performance is compared to the previous architecture. A 

comparative analysis is conducted under identical 

training conditions, with the structural configuration 

being the only variable, while the same dataset from the 

previous study is used. Hyperparameters, such as the 

number of nodes per layer and the learning rate, are 

inherited from prior work without additional 

optimization. By isolating the impact of the branched 

path, this study aims to provide deeper insights into the 

effect of architectural changes on the prediction of 

thermal-hydraulic behavior in severe nuclear accident 

scenarios. 

  

2. Methods  

 

2.1 Accident Scenario and data generation 

Table 1. Target Component Failure and SAMG 

Mitigation 

# Component failure 

1 Reactor coolant pump (RCP) seal LOCA 

2 Letdown heat exchanger (HX) 

3 High-pressure injection (HPI) pump 

4 Low-pressure injection (LPI) pump 

5 Containment spray system (CSS) pump 

6 Motor-driven auxiliary feedwater (MDAFW) 

pump 

7 Charging pump (CHP) 

# SAMG mitigation 

1 Steam generator external injection 

2 Reactor cooling system depressurization 

3 Reactor cooling system external injection 

 

     The data utilized in this study consists of LOCCW-

based accident scenarios from the OPR1000 reactor. The 
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failure times for components susceptible to malfunction 

during the LOCCW accident process were randomized, 

as summarized in Table 1. Additionally, Severe Accident 

Management Guidelines (SAMG) mitigation actions 1, 

2, and 3, which can be executed in any sequence, were 

set to activate upon meeting the predefined mitigation 

conditions. To introduce variability, mitigation actions 

were also triggered at randomized times, even when the 

activation conditions were satisfied. Through this 

process, approximately 11,000 accident scenario datasets 

were generated, with each scenario simulating a 72-hour 

period from the initial event, specifically the Reactor 

Coolant Pump (RCP) trip. 

 

Figure 1. Detailed Location of Component Failure 

on OPR1000 Safety System 

2.2 Training Condition  

 

    Excluding certain scenarios from the 11,000 randomly 

generated accident cases that failed to complete the 72-

hour simulation due to errors in the MAAP code, a total 

of 109 scenarios, accounting for approximately 1% of the 

10,917 successfully simulated cases, were isolated from 

the dataset and designated as the validation set for final 

model evaluation. These scenarios were entirely 

excluded from the training process and were later utilized 

to assess the general regression capability of the trained 

model. 

Table 2. Target thermal-hydraulic Variable 

# Target thermal-hydraulic variable 

1 Primary system pressure (PPS) 

2 Cold leg temperature (Cold leg T) 

3 Hot leg temperature (Hot leg T) 

4 Reactor vessel water level (RV WL) 

5 Steam generator pressure (SG P) 

6 Steam generator water level (SG WL) 

7 Max CET 

 

    For the remaining dataset, thermal-hydraulic 

information at time t+1 was predicted using thermal-

hydraulic data from 𝑡−2, 𝑡−1, and 𝑡, along with 

instrumentation and SAMG-related information at t, 

following the established methodology [3-4]. The 

specific thermal-hydraulic variables predicted in this 

study are listed in Table 2, which includes key 

parameters available in the Main Control Room (MCR) 

of a nuclear power plant and essential for implementing 

SAMG mitigation measures. 

 

    To mitigate the risk of overfitting during the training 

process, 5% of the training data was randomly extracted 

and designated as a test set, which was excluded from 

model training and reserved for evaluating training 

performance. Unlike the previously separated 1% 

validation set, which was isolated based on total data set, 

the test set was randomly selected across different time 

points within all scenarios.  

 

    During model training, an early stopping criterion was 

applied, where training was terminated if the mean 

absolute error (MAE) on the test set did not improve for 

10 consecutive epochs. The model weights 

corresponding to the lowest test set MAE recorded 

during training were retained. This approach ensured that 

data points excluded from training were utilized to 

regulate the training process, preventing overfitting 

while optimizing the computational time required for 

training. The proportion of the test set and the 

termination criteria based on the number of epochs can 

be further optimized in future studies to enhance model 

performance. 

 

2.3 Model Performance Evaluation 

 

    The performance of the model was evaluated based on 

the 72-hour Euclidean distance of the predicted accident 

scenario rather than using mean absolute error (MAE) or 

root mean square error (RMSE), which are typically 

employed to assess model learning or general regression 

capability. MAE and RMSE were not calculated for 

individual data points, as the model utilizes a rolling-

window prediction methodology, where each prediction 

is based on the previously predicted values and 

subsequently used to forecast the next time step. 

 

    The evaluation was conducted by comparing the full 

dataset of accident scenarios included in the validation 

set with the accident scenarios predicted by the model. In 

this process, only the initial accident conditions, the 

failure time of a specific component, and the activation 

time of SAMG mitigation measures were provided as 

input to the model. This approach ensures that the 

model’s long-term predictive performance is assessed in 

a manner that reflects real-world accident progression 

and mitigation response dynamics. 
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y𝑀𝐴𝐴𝑃,𝑖,𝑡: 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 ℎ𝑦𝑑𝑟𝑢𝑎𝑙𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 "i" 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡  

𝑖𝑛 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡 

y𝑝𝑟𝑒𝑑,𝑖,𝑡: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 ℎ𝑦𝑑𝑟𝑢𝑎𝑙𝑖𝑐 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 "i"  

𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 𝑖𝑛 𝑚𝑜𝑑𝑒𝑙 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = 𝛴𝑡=1
72 ‖𝑦𝑀𝐴𝐴𝑃,𝑖,𝑡 − 𝑦𝑝𝑟𝑒𝑑,𝑖,𝑡‖ 

 

Figure 2. Euclidean distance 

    The evaluation method used the formula described 

above, along with Figure 2, and summed the Euclidean 

distances to evaluate the performance of the model for a 

single scenario. The Euclidean distance was calculated 

by treating both the MAAP data in the validation set and 

the predicted accident scenario data as independent time 

series. This approach allowed for a direct comparison 

between the observed (MAAP calculated) and predicted 

thermal-hydraulic variables, facilitating the assessment 

of model performance in simulating the progression of 

the accident scenario. 

 

2.4 Model Architecture 

 

In this study, the effect of introducing branched hidden 

layers in a Multi-Input Single-Output (MISO) Long 

Short-Term Memory (LSTM) model is analyzed. The 

MISO LSTM architecture, which demonstrated high 

predictive performance in the previous study [4], serves 

as the baseline for this analysis. 

 

 

Figure 3. Diagram of Non-branched Model 

The structure of the existing MISO LSTM model is 

illustrated in Figure 3. The model receives input in the 

form of a tensor with dimensions (3,17), consisting of 

seven thermal-hydraulic variables at time steps 𝑡−2, 𝑡−1, 

and 𝑡, along with ten component failure states and 

SAMG mitigation action information at time steps 𝑡−2, 

𝑡−1, and 𝑡. The model processes this input using a dual-

layer LSTM structure followed by a dense layer, 

producing an output tensor of dimensions (1,1), which 

corresponds to the predicted values of the thermal-

hydraulic variables at time t+1.  

 

To predict all seven thermal-hydraulic variables, 

seven independent models of the same structure are 

trained separately, with each model dedicated to 

predicting a single thermal-hydraulic variable. This 

approach ensures that each variable is individually 

optimized, potentially enhancing predictive accuracy 

compared to a single multi-output model. 

 

Figure 4 illustrates the structure of the branched model. 

Unlike the traditional model, which utilizes a tensor of 

dimensions (3,17) that includes SAMG mitigation 

information as input, the branched model processes an 

input tensor of dimensions (3,14), where SAMG 

mitigation measures are instead used to determine the 

computational path within the network. 

Figure 4 Diagram of Branched Model 

The output structure remains the same as the original 

model, producing a tensor of dimensions (1,1) after 

passing through a dual-layer LSTM structure followed 

by a dense layer. However, the branched model 

introduces structural modifications in the LSTM layers. 

In the initial LSTM layer, two independent LSTM 

networks operate in parallel. If any of the SAMG 

mitigation measures (1, 2, or 3) are activated, the input is 

processed through the lower LSTM path, as shown in 

Figure 3. Otherwise, the input follows the upper LSTM 

path. 

 

 

Figure 5. Return of Second LSTM Layer 

As shown in Figure 5, the second LSTM layer consists 

of six independent LSTM networks, organized into three 

pairs, with each pair corresponding to one of the SAMG 

mitigation measures (1, 2, or 3). In the sample case 
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presented in Figure 5, depending on whether SAMG 

mitigation is enabled or disabled, one pair of LSTM 

networks produces the hidden state from the relevant 

network. A total of three hidden states are generated 

based on SAMG mitigation strategies 1, 2, and 3, and the 

linear sum of these hidden states is calculated, with fixed 

weight values w1 ,w2, and w3. This summed output is 

then used as input to the final dense layer. 

 

The final dense layer consists of two independent sub-

layers, with the output being determined based on the 

activation status of SAMG mitigation measures. This 

architecture allows the model to dynamically adjust its 

processing pathway depending on the mitigation strategy 

applied, potentially improving predictive accuracy in 

scenarios where different accident management 

measures influence thermal-hydraulic behavior. 

 

3. Results & Discussions 

 

Table 3 MAE and RMSE of Variables from MISO 

LSTM and MISO LSTM Branched Model 

 MISO LSTM MISO LSTM Branched 

 MAE RMSE MAE RMSE 

PPS 1.32.E-02 4.15.E-02 1.11.E-02 2.39.E-02 

Cold leg T 9.09.E-02 1.34.E-01 5.17.E-02 7.52.E-02 

Hot leg T 5.21.E-02 7.89.E-02 4.14.E-02 5.88.E-02 

RV WL 8.19.E-02 1.37.E-01 5.98.E-02 1.02.E-01 

SG P 9.91.E-02 1.38.E-01 6.81.E-02 1.05.E-01 

SG WL 1.02.E-01 1.28.E-01 1.69.E-02 2.89.E-02 

MAX 

CET 
5.60.E-02 9.95.E-02 4.32.E-02 8.19.E-02 

 

 

Figure 6. Average Euclidean Distance for Thermal-

hydraulic Variable 

Figure 6 presents the performance metrics for both the 

non-branched and branched models. It is evident that, for 

all thermal-hydraulic variables, the branching 

architecture generally improves model performance. 

Variables such as primary system pressure, which are 

also accurately predicted by the non-branched model, 

show a slight reduction in Euclidean distance. However, 

variables like steam generator water level exhibit a 

significant reduction in error, with the Euclidean distance 

decreasing by approximately a factor of six when 

branching is applied. This indicates that the cumulative 

error in predicting a single 72-hour accident scenario is 

reduced by a factor of six. 

 

 

While the overall trend suggests that branching 

improves prediction accuracy, high error accumulation is 

still observed for certain variables, particularly steam 

generator pressure. This points to the need for further 

refinement of the prediction model to enhance its 

accuracy for these specific variables. 

 

Figure 7 shows the steam generator pressure for the 

scenarios in the validation set where the branched MISO 

LSTM model exhibits the lowest prediction 

performance. The Euclidean distance for steam generator 

pressure in this scenario is 19.64, which is significantly 

higher than the average value of 4.97, indicating very 

poor forecast performance. While the calculation using 

MAAP (black line) shows a steady decrease in steam 

generator pressure, the forecast from the branched MISO 

LSTM model fails to follow this trend. This discrepancy 

can be attributed to the ineffective communication of 

information regarding the operating components (dashed 

lines) early in the scenario. 

 

 

 

Figure 7. Steam Generator Pressure Trends in 

Scenarios with Poor Predictive Performance 

4. Conclusions & Future Work 

 

    This study evaluates the performance of Multi-Input 

Single-Output (MISO) LSTM models with branched and 

non-branched architectures for predicting thermal-

hydraulic variables during severe nuclear power plant 

accidents. The results show that branching generally 

improves model performance for predicting most 

thermal-hydraulic variables. In particular, variables such 

as steam generator water level exhibit a substantial 

reduction in error, highlighting the benefits of the 

branched structure. However, certain variables, such as 

steam generator pressure, still experience high error 

accumulation, pointing to areas where model refinement 

is needed. 

 

    Future work will address the issue of component 

failure information not being effectively communicated 

to the model, particularly at the beginning of the 

scenario. This issue contributed to poor predictive 

performance for some variables, such as steam generator 
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pressure, in the branched MISO LSTM model. 

Improving the communication of operational component 

states and incorporating more precise failure data will be 

essential to enhancing the model’s forecasting accuracy. 

Additionally, further optimization of model architecture 

will be explored to improve the generalization capability 

and reduce the prediction errors for critical variables in 

severe accident scenarios. 
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