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1. Introduction 
 

Nuclear energy plays a vital role in global energy 
demands due to its ability to provide a stable power 
supply and reduce greenhouse gas emissions. A nuclear 
power plant is a complex system that demands high 
levels of safety and operational continuity. 
Consequently, research has been conducted into 
autonomous operations to reduce the burden on 
operators and enhance overall system performance. 

For instance, Lee et al. [1] proposed a technique that 
combines Deep Reinforcement Learning (DRL) with a 
rule-based system. Park et al. [2] applied DRL to 
automate the heat-up mode, which is still more manual 
than other modes. Additionally, Bae et al. [3] applied 
DRL to manage multiple objectives and devices during 
reactor operation. 

There are also studies on using DRL for reactor 
diagnostics and predictions of nuclear reactors. Lee et al. 
[4] applied models based on Convolutional Neural 
Networks (CNNs) to detect abnormal reactor states. Y. 
H. Chae et al. [5] advanced this research using Graph 
Neural Networks (GNNs) for reactor diagnostics. J. 
Yang et al. [6] investigated predictions of reactor 
malfunctions using Long Short-Term Memory (LSTM) 
networks. In J. Bae et al. [7], DRL was utilized to 
predict key parameters in emergencies within a reactor. 

However, these DRL models excel only at tasks for 
which they have been trained, limiting their capacity to 
handle multiple tasks with a single model. These 
fragmented DRL models can be integrated into a 
unified system using a Large Language Model (LLM). 
LLM is a model that demonstrates natural language 
understanding and generation capabilities by training on 
vast amounts of text data. LLM can perform tasks such 
as summarizing information based on provided text, 
engaging in dialogue, and assisting with document 
creation. By utilizing the function calling feature of 
LLM, it is possible to connect natural language requests 
with control functions. Function calling enables an 
LLM to act by invoking pre-written functions via 

natural language command. This integration enables the 
system to respond more diversely. 

In this paper, we present an architecture that 
integrates LLM-based control with DRL models within 
a single framework. We utilized a light water cooled 
and moderated small integral pressurized water reactors 
(iPWR) simulator as distributed by the International 
Atomic Energy Agency (IAEA). 

 
2. LLM-Based Integrated Control Agent System 

Development 
 

2.1. Modules and Workflow 
 
LLM Module receives natural language commands 

from users and invokes control functions through 
function calling. The Controller Module contains 
specific functions (e.g. reactor power demand setpoints, 
control rod adjustments). Diagnostic and Predictive 
Modules diagnose the state of the reactor and predict 
specific values using collected data. The Data 
Collection Module records real-time data every second 
in a CSV file after the reactor is started. The Data 
Collection Module operates without requiring user 
commands. 

The basic workflow is as follows: 1) A user 
commands the LLM in natural language. 2) The LLM 
parses the command and through function calls, the 
corresponding function is executed in a control module. 
3) Executed function from the Controller Module 
adjusts the settings. 4) The LLM reports back to the 
user in natural language.  

When using a DRL model, 1) after the user 
commands, 2) the LLM utilizes function calling to 
execute the corresponding model function. 3) The DRL 
model is operated using a dataset made by the Data 
Collection Module. 4) And diagnosed, predicted data is 
reported by LLM to User. The workflow described can 
be observed in Figure 1.  
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Fig. 1. System operation flow chart. 
 
2.2. DRL Model Design 
 

DRL models consist of the diagnostic model which 
requires snapshot data, and the predictive model which 
needs time-series data. The 62 variables and 11 
scenarios were selected based on the simulator’s 
Exercise Book. 

The diagnostic model was developed using 
Multilayer Perceptron (MLP) to determine the current 
state of the simulator. The model correctly classified the 
No Malfunction case with an accuracy of 98.42% and it 
categorized the remaining classes woth an accuracy 
close to 100%. 

The predictive model was developed using LSTM, 
with an input of 60 seconds for 62 variables, to predict 
the average coolant temperature over the next 140 
seconds. The average coolant temperature was chosen 
as it is a crucial variable for safety, efficiency, and 
operational control. The results and predictions for each 
training session can be viewed in Figure 3. All 
predictions closely follow the overall trend with 
minimal error. 

 

 
Fig. 3. Predicted values and errors for the next 140 seconds 
for the No Malfunction case. 
 
2.3. Implementation of Function Call-based Control 
 

In this iPWR simulator, variable values are located at 
specific addresses within a particular DLL file. The 
form of the read function takes the simulator’s name, 
DLL file address, and variable address as inputs. The 

write function additionally accepts a new value to be 
written. By utilizing OpenAI’s Swarm, roles are 
distributed to ensure more stable operation. Three 
agents are used, each serving distinct roles, a supervisor, 
a monitoring agent, and a scenario agent. The 
supervisor is configured to perform various actions such 
as heat up, cool down, and change power demand 
through logic functions that utilize basic functions. This 
setup enables it to execute multiple operations with a 
single command. The monitoring agent is composed of 
functions that provide information on the current state 
of the reactor. The scenario agent is designed to execute 
basic functions that operate the simulator in a sequence 
specified by procedures written in natural language.  

 
3. Experiment and Results 

 
3.1. Experiment 

 
For our experiments, we utilized hardware 

comprising an Intel i7-13700 CPU and NVIDIA 4090 
graphics card. The experiments were conducted: 1) 
heat-up, 2) procedure processing, and 3) autonomous 
decision-making. All experiments referenced the 
Exercise Book of the iPWR simulator. 

Heat up: In this scenario, we will compare the 
performance of the system against human operation 
under identical conditions. This starts from a condition 
of 0% Beginning of life (BOL), in Natural Circulation 
(NC), and before withdrawing control rods. After fully 
drawing control rods A and B, withdraw control rod C 
until rod bank C reaches 49 steps. The control rods 
consist of A, B, and C, and the step scale ranges from 0 
to 80, where 80 represents the fully withdrawn position. 
Then dilutes the boron concentration. Ensure that the 
SUR (Start Up Rate) does not exceed 0.5 dpm 
significantly, as this could lead to reactor shutdown. 
Finally, control rod C is gradually lifted until the 
neutron power reaches 8%. 

Procedure processing: In this test, we will verify the 
system’s ability to accurately perform function calling 
based on the given instructions. The scenario used in 
this experiment is the “Load Maneuvering (10%) in 
reactor leading mode” based on the Exercise Book. In 
brief, the scenario involves checking variables such as 
neutron power, start-up rate, and boron concentration. 
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After selecting the appropriate reactor mode, 
maneuvering the reactor power down to 90% and 
subsequently raising it back to 100%. The scenario 
starts differently from the heat-up scenario, beginning at 
a condition of 100% BOL, in NC. Figure 6. displays the 
actual experiment operation screen. Some steps of 
procedure and execution using function calling are 
observed. 

Autonomous decision-making: This test will examine 
whether the system can autonomously make decisions 
when provided with current circumstances by the 
diagnostic model. The scenario begins similarly to the 
procedure processing scenario, starting from 100% 
BOL, NC. After loading the Large Main Steam Line 
Break with a severity of 10%, the system is commanded 
to ‘Diagnose the reactor’s condition and initiate a cool 
down if a shutdown is anticipated.’  When diagnosing 
the simulator, it checks whether to initiate a cool down 
if a malfunction is detected. 

 

 
Fig. 4. The operation of procedure processing. Procedure steps 
16, 17, and 18, as well as the execution of user commands by 
the LLM, are observed. 
 
3.2. Results 

 
The heat-up scenario experiment was conducted 10 

times each by both a human and LLM. Figure 5. 
illustrates how long each instance of the experiment 
took. As shown in Figure 7, using the proposed system 
resulted in a 7.15% increase in speed compared to 
manual operation by humans. The variance is lower 
compared to human execution, the longest duration was 
around 1,700 seconds and the shortest was around 1,500 
seconds, while all instances operated by the system 
were consistently around 1,500 seconds.  

In procedure processing, after the procedure was 
inputted, the system asked the user for confirmation 
before executing each step, and upon receiving approval, 
carried out the actions according to the specified stages. 
The LLM occasionally displayed hallucinations, 
reporting actions it had not taken, such as checking 
variables or changing values. However, when explicitly 
instructed to execute the actions again, it performed the 
specified tasks. Figure 6. illustrates the neutron power 
over time during the system execution procedures. It 
followed the previously outlined scenario. Although 
functions for checking variables were insufficient to 

monitor all variables, it was observable that the output 
changed according to the scenario. 

Figure 7. displays the neutron power over time and 
Figure 8. displays the chat screen during the last 
experiment. The first diagnosis was conducted without 
applying any malfunction. During this, the LLM 
identified it as No Malfunction and took no further 
action. During the malfunction state, the system 
diagnosed the issue and executed a cool down. When no 
action was taken, the nuclear power increased until a 
shutdown occurred. Conversely, when a cool-down was 
attempted, the neutron power decreased before the 
shutdown. Due to the limitations of the simulator, the 
cool-down was not successful, however, it is evident 
that the system recognized the need for a shutdown and 
attempted the cool-down. 
 

 
Fig. 5. The duration of each instance of the heat-up scenario 
execution and their average time. 
 

 
Fig. 6. The neutron power over time, when the system 
executes procedural instructions. 

 
 

 
Fig. 7. Nuclear power over time when the decision-making 
scenario is executed by the system. 
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Fig. 8. The chat screen during the autonomous decision-
making experiment. 

 
4. Conclusions 

 
This paper presents an integrated framework that 

utilizes the function calling capabilities of LLM to 
implement automatic control and employs DRL models 
for diagnostics and predictions. As discussed earlier, 
compared to human operation, the experimental results 
showed control stability and the ability to predict 
subsequent variables with an error of less than 1%. The 
capability to issue in natural language, along with the 
use of procedural instructions, demonstrated 
improvements in user convenience. Additionally, it was 
confirmed that autonomous decision-making was 
possible when information was provided through the 
DRL model. 

While the current system has demonstrated 
advancements, there are several areas where further 
improvements and research are necessary. The 
limitation arises from the use of a training simulator, 
which constrains the complexity of scenarios that can 
be generated. As a result, it limits the system’s ability to 
showcase its full potential in handling more complex, 
real-world situations. Due to the lack of implementation 
of all necessary functions, it was challenging to 
determine if the LLM performed all steps perfectly. 
Occasionally, it exhibited hallucinations, highlighting 
the need for a system to prevent such occurrences. The 
scenarios predicted were also limited and the predicted 
data generated was not utilized effectively. Moreover, 
there were limited aspects of the system that could be 
controlled, further restricting the demonstration of its 
capabilities.  

Future research directions will explore various 
multimodal data sources, including video, audio, and 
textual documents, to develop more sophisticated 

autonomous control systems. Integrating these diverse 
data types aims to enhance the accuracy and reliability 
of predictive models and to expand the system’s 
capabilities in complex environments. 
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