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1. Introduction 

 
Nuclear power plants (NPPs) are critical 

infrastructures that demand the highest levels of safety 
and reliability. To detect potential risks and respond 
swiftly, various artificial intelligence (AI) techniques 
have been introduced in nuclear plant operations. 
Recently, big data analytics and deep learning-based 
approaches have improved maintenance efficiency and 
accident prevention, which have sparked significant 
interest in applying AI to the nuclear industry. 

 
However, complex AI models such as deep neural 

networks often behave as “black boxes,” making it 
challenging to understand or trust their decision-making 
processes. In a domain where transparent safety 
justifications are essential, this opacity poses a critical 
challenge. As a solution, an approach called Explainable 
Artificial Intelligence (XAI) has emerged. XAI aims to 
provide interpretable reasons for AI outputs, thereby 
enhancing the transparency and trust in AI systems. This 
paper outlines the concept and classification of XAI, 
reviews its key applications in nuclear power plant 
operations, and discusses future directions. 

 
2. Concept and Classification of XAI 

 
2.1 Concept of XAI 

 
Explainable Artificial Intelligence (XAI) encompasses 

a set of techniques and methods that enable humans to 
understand how and why AI models arrive at specific 
outputs. While traditional statistical or linear models 
were relatively interpretable due to their simpler 
structures, the advent of deep learning—with its 
numerous parameters and layers—has significantly 
reduced model interpretability. Consequently, XAI 
research has focused on either designing inherently 
interpretable models (ante-hoc approaches) or providing 
post-hoc explanations to clarify the reasoning behind a 
model’s predictions. 

 
2.2 Classification of XAI 

 
2.2.1 Classification by Model Development Stage 

 
- Ante-hoc Approach: Models are designed to be 

inherently interpretable from the outset. Decision trees 

and rule-based systems are typical examples, as their 
transparent structures allow immediate explanation 
without additional processing after training. 

 
- Post-hoc Approach: Explanations are generated 

externally after the model has been trained. Techniques 
such as LIME (Local Interpretable Model-Agnostic 
Explanations) and SHAP (Shapley Additive 
Explanations) are widely used post-hoc methods 
applicable to complex black-box models like deep neural 
networks and random forests. 

 
2.2.2 Classification by Explanation Scope 

 
- Local Methods: These provide explanations for 

individual predictions or small regions of the input space. 
For example, LIME and SHAP clarify why a specific 
input leads to a particular outcome. 

 
- Global Methods: These aim to describe the overall 

reasoning structure of the model, including the 
importance of each feature across the entire dataset, 
helping domain experts understand the broader patterns 
the model has learned. 

 
2.2.3 Classification by Explanation Format 

 
- Feature Importance: Methods in this category rank or 

quantify the contribution of each input variable to the 
final prediction. LIME and SHAP excel at producing 
such importance scores. 

 
- Visual Explanations: Tools such as Gradient-

weighted Class Activation Mapping (Grad-CAM) 
highlight the most relevant regions in an image or key 
segments in a time-series signal that influence the 
model’s decision. 

 
- Rule/Knowledge-based Explanations: These 

methods extract if-then rules or domain knowledge from 
the model, allowing users to understand the logical 
inference path used by the AI system. 

 
These classification schemes enable practitioners to 

select XAI methods that are most suitable for their 
domain and objectives. In high-reliability sectors such as 
nuclear energy, where both interpretability and accuracy 
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are critical, a multifaceted approach to XAI is often 
necessary. 

 

Fig. 1. Trade-off between performance and explainability of 
widely used AI models. The ideal solution should have both 
high explainability and high performance. [1] 

 
3. XAI Applications in Nuclear Power Plant 

Operations 
 

3.1 Anomaly Detection and Failure Prediction 
 
Nuclear power plants deploy thousands of sensors that 

collect operating data in real time. By applying deep 
learning models, early detection of abnormal patterns is 
possible, thereby reducing the risk of severe accidents. 
For instance, Park et al. (2022) [2] developed an anomaly 
detection model based on a GRU-AE combined with 
LightGBM and employed the SHAP explanation method 
to visualize the key contributing variables. This 
visualization helps operators identify which sensor 
readings have the most influence on the detection of 
anomalies. 

 
In addition to GRU-AE-based approaches, other 

recurrent models such as Bi-directional LSTM (Bi-
LSTM) have been utilized to capture temporal patterns 
in nuclear plant operation data. For example, a Bi-
LSTM-based anomaly detection model was applied to 
identify early signs of faults in simulator-generated data, 
and feature attribution was visualized using SHAP to 
explain which variables triggered anomaly detection 
decisions [3]. 

 
3.2 Operator Decision Support 

 
During complex or emergency situations, AI-

generated recommendations can support operator 
decisions; however, unexplained decisions may be met 
with skepticism from experienced staff. By providing 
case-specific explanations using local methods (e.g., 
LIME or SHAP) and supplementing them with global or 
visual explanations (e.g., Grad-CAM highlighting 
critical data segments), operators gain a clearer 
understanding of the AI’s rationale, thereby enhancing 
their situation awareness (SA) and trust in the system. 

 
An AI-guided reasoning-based operator support 

system has been developed using Answer Set 
Programming (ASP) to represent nuclear power plant 
knowledge through logic rules. This system assists 
operators by providing fault identification, scenario 
analysis, and control options, thereby improving 
decision-making processes during complex events [4]. 

 
3.3 Predictive Maintenance and Safety Assurance 

 
Predictive maintenance (PdM) leverages machine 

learning to forecast component failures in advance, 
which allows for optimized repair scheduling [5]. 
Integrating XAI methods such as SHAP clarifies which 
indicators drive the failure predictions, enabling 
engineers to prioritize maintenance tasks more 
effectively. This not only reduces operational costs and 
improves safety but also fosters trust among regulatory 
bodies by transparently communicating the underlying 
reasoning behind the predictions. 

 
Amin et al. (2022) [6] proposed a novel approach to 

integrate explainable AI into prognostics and health 
management (PHM) systems for civil nuclear power 
plants. Using SHAP, they explained predictions from 
black-box models related to asset degradation. To 
improve usability among non-ML experts such as plant 
operators and regulators, they developed algorithms that 
translate SHAP visualizations into human-readable text. 
This translation improves transparency and fosters trust 
in AI-driven maintenance decisions, supporting safer and 
more accountable deployment of predictive models in 
the nuclear industry. 

 
Table I: Categorization of XAI Methods 

XAI 
Method 

Stage Scope Format 
Key Features 

Decision 
Tree 

Ante-hoc Global Rules/FI* 
Transparent; explicit if-then rules 

Rule-based 
Sys. 

Ante-hoc Global Rules 
Domain-driven; clear logical inference 

LIME 
Post-hoc Local FI 

Local linear model approximation 

SHAP 
Post-hoc Local/Global FI 

Shapley values quantify feature impact 

Grad-CAM 
Post-hoc Local Visual 

Highlights key regions using gradients 
*FI: Feature Importance 

 
4. Discussion and Future Work 

 
4.1 Reliability Verification and Regulatory Compliance 
 

Even with XAI, verifying the accuracy and robustness 
of explanations remains essential in high-reliability 
sectors such as nuclear power. Post-hoc explanations 
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might not fully reflect the internal mechanisms of 
complex models, potentially leading to misleading 
conclusions. Thus, it is necessary to cross-validate 
explanations from multiple methods and to contrast them 
with physics-based knowledge (e.g., thermal-hydraulics, 
neutron physics) to ensure that the explanations align 
with the actual system behavior. Regulatory 
organizations such as the NRC and IAEA emphasize that 
AI systems used in safety-critical applications must be 
both interpretable and verifiable [7]. 

 
4.2 Technical Advancements 

 
To simultaneously achieve high interpretability and 

accuracy, researchers are exploring advanced XAI 
approaches, including causal reasoning, counterfactual 
analysis, and simulator-based data augmentation. In 
areas like nuclear power operations, where real abnormal 
data are rare, simulators and augmented datasets can be 
used to generate extreme scenarios for testing both AI 
models and their corresponding XAI techniques. 

 
4.2.1 Integration of PINN and SciML 
 

Hybrid models like Physics-Informed Neural 
Networks (PINNs) and Scientific Machine Learning 
(SciML) combine data-driven approaches with physical 
laws to improve reliability in extreme or unseen 
conditions. PINNs, for instance, embed partial 
differential equations (PDEs) into the learning process, 
ensuring predictions align with physical principles. In 
nuclear power, PINNs can enhance thermal-hydraulics 
and core physics analysis, providing more reliable 
predictions in data-scarce situations. 

 
4.2.2 Ensuring Robustness Across Diverse Scenarios 

 
For Explainable AI (XAI) to be effective, the model 

must be robust. If the model is vulnerable to adversarial 
inputs or performs poorly in untrained scenarios, the 
explanations lose value. Using simulators or data 
augmentation to generate diverse scenarios, especially 
for rare events, and cross-checking with established 
physical knowledge can help ensure consistent 
performance and reliable explanations. 

 
4.2.3 Regulatory and Legal Considerations 

 
AI systems in the nuclear industry must meet 

regulatory standards and provide interpretable results. 
Bodies like the NRC require explainable AI in safety-
critical areas. As there is no universal standard for the 
level of explanation needed, industry collaboration with 
regulators is essential to create clear guidelines. A phased 
introduction, starting with non-safety-critical 
applications, can help build trust and validate 
performance. 
 

 

5. Conclusions 
 

In nuclear power plant operations, Explainable 
Artificial Intelligence (XAI) plays a vital role in ensuring 
safety and establishing trust in AI systems. This paper 
has reviewed the fundamental concepts and 
classifications of XAI, illustrated its application in 
anomaly detection, operator decision support, and 
predictive maintenance, and discussed future directions. 
The integration of physics-based models such as PINN 
and SciML with XAI, along with user-friendly interface 
designs and regulatory compliance, is anticipated to pave 
the way for robust, high-reliability AI systems in the 
nuclear industry. Such advances will ultimately enhance 
operational safety as well as overall trust in AI among 
industry stakeholders and the general public. 
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