

Testing the effect of packaging materials on activity measurement using $4\pi\beta$ - γ coincidence counting

Jinyu Kim (HANARO Utilization Division, KAERI)

Introduction

$4\pi\beta$ - γ coincidence system

- Radioisotope (RI) production in HANARO (¹⁷⁷Lu, ¹⁶⁶Ho, ⁶⁰Co, etc.)
 β/γ spectra & radioactivity measurement for
- p/γ spectra & radioactivity measurement for reactor-produced RI, in a narrow space (hot cell) \rightarrow mini size activity measurement system

• Measurement of correlated β and γ from the radioactive decays of produced radioisotope • Estimating absolute radioactivity of the radioisotope (Efficiency-extrapolation method) • $\frac{N_{\beta}N_{\gamma}}{N_c} = N \left[1 + C \left(\frac{1 - \varepsilon_{\beta m}}{\varepsilon_{\beta m}} \right) \right] = N \left[1 + C \left(\frac{1 - N_c / N_{\gamma}}{N_c / N_{\gamma}} \right) \right]$

Activity Measurement System

• Developed in 2023 / activity measurements were validated using the reference materials • Composition: detection part (β/γ detectors) + DAQ system

Research reactor HANARO

Characteristic of the System

- Resolution of γ detectors: ~5% @ 662 keV
- Temperature dependence
- 3% gain change for ±1 °C change
- activity fluctuation: < 0.4% for ±1 °C change

Position Dependence

- Detecting material: Liquid scintillator (β , Ultima Gold AB), NaI crystal (γ , Saint-Gobain)
- SiPM array: scintillation light sensor
- (SiPM: Hamamatsu SP13360-1350PE, array production: Notice Korea)
- DAQ system: FADC (flash analog-to-digital converter) + server

The activity measurement system

Diagram for the activity measurement system

Measurements using the system

- Configuration for 4πβ-γ coincidence counting

 radionuclide sample in aqueous solution
 uniform distribution of radionuclide sample

 Solid-state radionuclide sample

 cannot uniformly distributed
 testing position dependence
- Testing position dependence using ${}^{60}Co$ wire - neutron irradiation to ${}^{59}Co$ wire in HANARO

• Position dependence for activity measurement \rightarrow center \geq edge, middle (max.) > bottom > top

Testing the effect of packaging materials

- Testing the effect of packaging materials for activity measurement \rightarrow the material would be used for powdered samples
- Radioactive sample: NTD-Ge
- Tested material: 1) none, 2) sealing film, 3) transparent tape, 4) opaque tape

 β (right) and γ (left) spectra for NTD-Ge sample

1) 2) 3) 4)
 Comparing measured activity values w/ packaging materials
 → None > sealing film > transparent tape > opaque tape
 → Activity reduction effect when packaging material is used.

Study plans
stability of activity reduction ratio for the same packaging material
searching other methods for measuring activity of powdered sample