

## Feasibility Analysis of Cryptocurrency Mining using Nuclear **Surplus Electricity**

# NUCLEAR ENERGY SYSTEM LAB

Jihyun Lee, Eung Soo Kim\* 2025 KNS Spring, 2025. 05. 22. Thu ss10248s@snu.ac.kr

### **1. Introduction**

#### Surplus Electricity Problem

: On Korea's East Coast, power generation exceeds demand due to weak transmission infrastructure causing electricity surplus, energy waste, and economic inefficiency.

#### Need for Utilization Strategies

: Legal and industrial solutions are being developed to redirect surplus electricity into productive uses, such as hydrogen production and steel manufacturing.

#### • New Opportunity: High-Power Industries

: This study explores applying surplus nuclear electricity to high-consumption sectors like **cryptocurrency mining**, enhancing energy efficiency and enabling new industrial growth.

#### Boost to Local Economy

: Redirecting surplus electricity to new industries can attract investment, create jobs, and simulate economic growth in underutilized regions.



### 4. Result of Economy Analysis

#### (1) Bitcoin with ASIC



Fig 4. BCR result of scenario using ASIC to mine Bitcoin

#### (2) Ethereum with GPU



### 2. Methods and Definitions

#### (1) Methodology

#### (2) Nuclear Surplus Electricity

#### **BCR(Benefit-Cost Ratio):**

calculated by comparing the total costs incurred over the entire project period with the expected benefits

Profitable? When BCR > 1

 $BCR = \frac{\sum_{t=0}^{n} \frac{B_t}{(1+r)^t}}{C}$ *B<sub>t</sub>*: Benefit  $C_t$ : Cost  $\vec{r:}$  social discount rate t: time

#### Fig 2. BCR (비용편익비율)

#### **LCOM(Levelized Cost of Mining):**

► The cost required to mine a single unit of cryptocurrency.

Profitable? LCOM < the market price</p>

$$LCOM = \sum_{t=0}^{n} \frac{C_t}{(1+r)^t} / \sum_{t=0}^{n} \frac{M_t}{(1+r)^t} \quad \begin{array}{l} M_t: \text{Mined} \\ \text{(BTC, ETH)} \end{array}$$
  
Fig 3. LCOM (균등화채굴비용)

### 3. Assumption

| (1) Assumption for Economy Calculating                    |       |                                                         |
|-----------------------------------------------------------|-------|---------------------------------------------------------|
| Item                                                      |       | Value                                                   |
| <capital cost=""></capital>                               |       |                                                         |
| Loan Cost                                                 |       | (Initial) 50,000,000 KRW<br>(Monthly) 5,000,000 KRW     |
| Equipment Cost                                            |       | Mining Machine Price $\times$ Number of Mining Machines |
| Additional Cost                                           |       | 20% of (Loan Cost + Equipment Cost)                     |
| <operational and="" cost="" maintenance=""></operational> |       |                                                         |
| Electricity                                               | Basic | 7,750 KRW/kW per month                                  |
|                                                           | Usage | Generation Tariff of NPP                                |
| Water Supply                                              | Basic | 1,080 KRW per month                                     |
|                                                           | Usage | 1,000 KRW per ton                                       |
| Maintenance Rate                                          |       | 2% of Capital Cost                                      |
| Others                                                    |       | 1% of Capital Cost                                      |

- ► The portion of nuclear-generated power that exceeds actual demand due to foreca sting errors and grid transmission limit.
- Quantifying this surplus by allocating the East Coast's total excess electricity (6.7 GW as of April 2024) proportionally to NPPs based on their installed capacity s hare.

|                  | MW   | Capacity<br>(%) | Surplus<br>(MW) |
|------------------|------|-----------------|-----------------|
| Hanul #1         | 950  | 10.92           | 360.34          |
| Hanul #2         | 950  | 10.92           | 360.34          |
| Hanul #3         | 1000 | 11.49           | 379.31          |
| Hanul #4         | 1000 | 11.49           | 379.31          |
| Shin-Hanul<br>#1 | 1400 | 16.09           | 531.03          |
| Shin-Hanul<br>#2 | 1400 | 16.09           | 531.03          |
| East-Coast       | 8700 | 100             | 3300            |

Fig 5. BCR result of scenario using GPU to mine Ethereum

| BC      | CR       | Net Prof | it (KRW) |
|---------|----------|----------|----------|
| Bitcoin | Ethereum | Bitcoin  | Ethereum |
| 63.52   | 2.80     | 3.2E+11  | 6.37E+09 |

### (3) LCOM (Bitcoin)



| GPU               | BCR   | ASIC                  | BCR    |
|-------------------|-------|-----------------------|--------|
| GeForce RTX 3090  | 1.285 | Bitmain Antminer S9   | 24.426 |
| Radeon RX 570 8GB | 2.979 | Canaan AvalonMiner 12 | 48.274 |
| Radeon RX 5600 XT | 3.511 | Whatsminer M30S++     | 70.206 |
|                   |       |                       |        |

#### (2) Assumption for Cryptocurrency Scenario

| <b>Cryptocurrency Items</b>                                       | Ethereum (GPU) / Bitcoin (ASIC)                                              |  |
|-------------------------------------------------------------------|------------------------------------------------------------------------------|--|
| <b>Operation Period</b>                                           | 61 months (2019.02~2024.02)                                                  |  |
| Mining Machine                                                    | AMD Radeon R9 390 / Bitmain Antminer S19 Pro                                 |  |
| Profitability                                                     | 20% decrease every two years                                                 |  |
| Initial Profitability<br>(monthly)                                | <ul> <li>Hashrate of GPU 29MH/s</li> <li>Hashrate of ASIC 110TH/s</li> </ul> |  |
| Social Discount Rate                                              | 4.5% (by Ministry of Economy and Finance)                                    |  |
| <b>Cost</b> = Mining Machine Installation Cost + Electricity Bill |                                                                              |  |

#### Number of GPU

| GPU | BCR   |
|-----|-------|
| 21  | 1.012 |
| 122 | 2.314 |
| 490 | 1.001 |

#### Number of ASIC

| ASIC | BCR     |
|------|---------|
| 14   | 1.011   |
| 100  | 17.807  |
| 500  | 110.036 |

### **5.** Conclusion

**Bitcoin mining with ASICs** demonstrates clear economic feasibility, with BCR > 10 and a break-even point of just 3 days under current market conditions.

This strategy not only improves the **operational efficiency of nuclear** power plants, but also promotes regional industrial growth by introd ucing new energy-intensive businesses.

Further research is needed on **policy frameworks**, environmental impact, and expanding applications beyond cryptocurrency mining.