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1. Introduction 

 
The long-term operation of nuclear power plants leads 

to neutron irradiation embrittlement in reactor pressure 
vessels (RPVs), resulting in a shift in the Charpy 
transition temperature and a reduction in impact 
toughness. Surveillance test programs are implemented 
to monitor RPV material properties over time. Various 
embrittlement trend curves (ETCs) have been developed 
using accumulated surveillance data, such as ASTM 
E900-15 [1], which provides a generic nonlinear 
regression model for predicting the transition 
temperature shift (TTS). However, many nuclear power 
plants exhibit systematic deviations from this generic 
curve due to variations in production heats, notch 
orientation, or initial unirradiated properties. This study 
proposes a mixed-effects modeling approach to better 
account for plant-specific deviations and reduce 
prediction errors by distinguishing group-level biases 
from within-group measurement errors. 

 
2. Methodology 

 
A large surveillance dataset (Baseline22), comprising 

over 2,000 Charpy test data points from various nuclear 
power plants worldwide, was grouped based on material 
type and notch orientation, resulting in over 600 distinct 
groups [5]. The generic ETC (E900-15) served as the 
baseline trend function. 

The adjustment model can be expressed as: 
 

𝑇𝑇𝑆!"   =  𝜂!   +  𝜇!   · 𝐸𝑇𝐶(𝑥!") + 𝑒!" 	
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µ# ~ N(µ$,  σ&)	
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Bayesian Markov Chain Monte Carlo (MCMC) 

methods were then used to fit mixed-effects models, 
incorporating group-specific intercepts and, in some 
cases, slopes to adjust baseline predictions [3-5]. An 
intercept-only model introduced a unique vertical shift 
for each group, while a more complex model allowed 
both intercept and slope deviations. Model performance 
was evaluated using root mean squared deviation 
(RMSD) and leave-one-out cross-validation (LOO-CV). 

 
3. Results 

 
Figure 1 presents residual plots for various adjustment 

models. AM1 and AM2, which do not incorporate group-
specific intercepts, exhibit an RMSD of approximately 
13.35°C, similar to the unadjusted E900-15, with a broad 
residual distribution. AM2, which applies a slope 
adjustment to the entire dataset, corrects the residual 
trend to near zero. AM3, incorporating group-specific 
intercepts, reduces RMSD by approximately 37%, with 
a noticeably narrower residual spread. AM4, which 
includes a fixed-effect slope, offers slight additional 
improvement. AM5 and AM6 introduce group-specific 
slopes, further reducing RMSD, but with marginal 
benefits compared to AM3 and increased computational 
complexity. 
 

 
Fig. 1. Residual plots for each adjustment model based on 
Baseline22g data. 

 
 
The AM3 model, using only three parameters, 

achieves lower RMSD than E900-15, enabling effective 
bias adjustment with minimal data. Bayesian MCMC 
analysis shows that intercept values converge with 
increased data, aligning with the "shrinkage" effect. 
AM3 allows a closed-form solution using the Best Linear 
Unbiased Prediction (BLUP) method. Figure 2 illustrates 
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the shrinkage effect of slope and intercept in AM3 
models according to group size. 

Since between-group and within-group variances are 
nearly equal in AM3, its adjustment formula aligns with 
MRP-462. While incorporating group-specific random 
slopes requires matrix-based computations, increasing 
complexity, AM3’s simplicity makes it suitable for 
regulatory applications by balancing accuracy and 
computational efficiency. 
 

 
Fig. 2. Relationship between group size n and the slope and 
intercept in the AM3 model. 
 

 
Figure 3 highlights the predictive interval standard 

deviation as more surveillance data become available. In 
the early stages, with only one or two irradiation data 
points per group, the model’s prediction interval remains 
relatively large. As additional measurements are 
incorporated, the intercept and its uncertainty converge 
to more stable values, reducing the overall prediction 
interval. Using AM3 model parameters, the standard 
deviation of the prediction interval can be quantitatively 
computed through a closed-form equation. 

 

 
Fig. 3. Standard deviation of prediction interval as a function 
of group size. 

 
 

4. Conclusion 
 

This study demonstrates that incorporating a mixed-
effects model into the E900-15 ETC framework 
significantly improves the prediction accuracy of RPV 
embrittlement. Even a simple intercept-only adjustment 
model (AM3) effectively separates group-specific biases 

from measurement errors and substantially reduces 
RMSD. While including group-specific slope terms 
provides further improvements, regulatory clarity and 
practical simplicity may favor the intercept-only 
approach. Closed-form approximations for intercept 
correction can be implemented without extensive 
MCMC calculations, making this method particularly 
promising for regulatory and field applications in aging 
nuclear power plants. 
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