

Review of Comparison of Heat Transfer and Pressure Drop between OTHSG and PCHE

Sinyoung Park, Taeseok Kim*

Department of Electrical and Energy Engineering, Jeju National University, Jeju, 63243, Republic of Korea *Corresponding author: tkim@jejunu.ac.kr

Introduction

- Small Modular Reactors (SMRs) integrate the core, pumps, and steam generators into a single vessel.
- This study compares two types of steam generators—OTHSG and PCHE—for such compact reactor systems, based on a thermalhydraulic framework developed by MIT.

Printed Circuit Heat Exchanger (PCHE)

• A compact, microchannel-based heat exchanger designed for next-gen SMRs.

► Etched microchannels

• Chemically etched microchannels promote turbulence, boosting heat transfer.

Counterflow heat exchange

• Counterflow design maximizes temperature gradient, enhancing thermal efficiency.

Thermal Safety Margin Evaluation in PCHE

PCHE Nodal Modeling Overview

- $\dot{m}(H_{in}-H_{out})=P_h\Delta z\cdot h_{tot}(\bar{T}_{hot}-\bar{T}_{cold})$
- → The PCHE is divided into axial nodes to analyze heat transfer at discrete locations.
- → Energy is exchanged at each node between counterflowing hot and cold channels.
- → The flow directions are opposite for hot and cold fluids, as shown.

Current G > Gmin → Stable two-phase flow → provides sufficient thermalhydraulic margin → Safe operation

Mass Flux vs. Quality for PCHE Operation" or "Thermal Margin Analysis

- Design Implications → Conservative CHF margin → Operating heat flux (q") is maintained below CHF limit → Multiple models = reliable design
- Vertical CHF → Bowring 2.0E+06 CHF predictions from various correlations under vertical flow assumption

► Engineering Strengths

- → Exceptional heat transfer performance via microchannels
- → High surface area and power density per unit volume
- → Compact size enables easy integration in **SMRs**
- → Enables countercurrent flow, enhancing heat

transfer efficiency

→ Operates under high-pressure and high-

temperature conditions

Design Considerations

- → Risk of fouling or clogging in microchannels
- → Difficult to inspect or clean internal flow paths
 - → Requires advanced fabrication (e.g., diffusion bonding)
- → Limited long-term operational data in nuclear reactors

Once-Through Helically Coiled Steam Generator (OTHSG)

- OTHSG is a once-through steam generator composed of helically coiled tubes.
- It enables continuous phase change and compact integration within the reactor vessel, making it suitable for integral SMR designs like IRIS and SMART.

► Technical Advantages

- → High heat transfer efficiency via helical coil geometry
- → Continuous phase change possible along tube length
- → Proven design with operating experience (e.g., IRIS, SMART)

Design Limitations

- → Larger volume compared to PCHE (less space-efficient)
- → Increased pressure drop due to curved flow
- → Maintenance and inspection of helical tubes are difficult
- → Geometry complexity limits modularity and

 Complex internal geometry of helical tubes poses challenges for inspection and maintenance.

Comparison of OTHSG and PCHE

→ A steep rise in local heat flux is observed, indicating rapid vapor formation. → Sudden drop beyond the peak suggests approach to CHF (Critical Heat Flux). → Small hydraulic diameter and low mass flux intensify this behavior.

Dry-out Region in PCHE

- → Flow optimization is essential to ensure thermal stability in this region. → Nevertheless, PCHE provides ~93×
- higher power density, enabling compact SMR design.

Initial Heat Transfer Response: PCHE vs. OTHSG → PCHE shows a steep temperature rise in wall & cold fluid at inlet

- → Indicates quick thermal response and rapid heat transfer onset → Wall-to-cold temperature difference remains consistent
- → OTHSG exhibits slower increase, favoring thermal stability

► PCHE

Conclusion & Implications

→ Excellent heat transfer performance suitable for compact design

→ ~48× smaller volume,

- **▶** OTHSG
 - → Moderate but stable heat transfer performance
 - → High compatibility with natural circulation
 - → Larger volume and higher pressure drop

With its excellent heat transfer capability and compact configuration, PCHE is a strong candidate for next-generation SMR applications.