Uncertainty Analysis of Source Term for OPR1000 Station Blackout Accident

Presented by Yong Jin CHO Prepared by Kukhee LIM, Eunho KIM, Dongju CHANG

CONTENTS

Safe Korea

Cornerstone for a

KINS is a

0.

Concluding Remarks

KINS is a Cornerstone for a Safe Korea

Introduction

- In Nuclear Safety Act in Korea, probabilistic source term goal is included.
 - The sum of the frequency of accident sequences with radionuclide Cs-137 release exceeding 100 TBq must be less than 1.0E-6/RY.
 - Cs-137 100 TBq
 - Cs-137 specific activity : 3.2 TBq/g
 - ✓ 100TBq/3.2 g = 31.25g
 - ✓ Cs-137 31.25g release = 100TBq
 - ✓ w/o duration
- Until now, the amount of Cesium released had not been analyzed using uncertainty methods.

KINS is a Cornerstone for a Safe Korea

Plant Modeling

OPR1000 Nuclear Power Plant

- OPR1000 : Korean Standard Nuclear Power Plant
 - Reactor Power: 2815 MWt
 - Electrical Power: 1000MWe
 - Reactor Coolant System
 - Two Hot Leg, Four Cold Leg, Four Reactor Coolant Pump
 - Two Steam Generator
 - Operating Pressure / Average Temperature : 15.5 Mpa / 311.6°C
 - Secondary System
 - Two Steam Generator, Four Steam Line
 - Operating Pressure / Average Temperature : 7.4 Mpa / 285°C

MELCOR Modeling of OPR1000

- MELCOR Model
 - Typical MELCOR Model
 - 100% Steady State calculation
- Long-Term Station Blackout w/o Operator actions

Parameter	Value	Simulated
Reactor Power	2815 MWt	2815 MWt
Core flow rate	15.3 t/s	15.1 t/s
Coolant operating pressure	15.5 MPa	15.5 MPa
Coolant inlet temperature	295.8°C	294.9°C
Coolant outlet temperature	327.3°C	328.1°C
Steam pressure	7.4 MPa	7.4 MPa
Steam temperature	285 °C	282 °C

CV 825 Pressurize compartment CV 842 UPPER DOME, Region A CV 841 UPPER DOME, Region B CV 840 Below polar crane B CV 843 Below polar crane A1 CV 823 Regenerative HX Room CV 824 Refueling pool area CV 830 Containment annulus area A1 CV 832 Containment annulus area B1 CV 834 Containment annulus area B2 CV 836 Containment annulus area A2 CV 833 Containment annulus area A3 CV 835 Containment annulus area B3 CV 810 Reactor cavity CV 821 Reactor vessel annulus CV 811 Cavity door area CV 831 RDT compartment

Long-Term Station Blackout

- OPR1000 LTSBO
 - w/o operator action

Event
Accident Start (SBO)
SG-A, B Dryout
SRV(PRZ) First Open
Fuel Uncovered
Core Dryout
Start to Melt Cladding
Debris Ejection to Cavity
SIT Injection

MELCOR Uncertainty Parameters

- Uncertainty Parameters
 - Selected based on SOARCA reports
 - 99 calculations with Monte-Carlo Sampling

No	Variables	Distribution	Remarks	
1	Molten Zircaloy Melt Break-through Temperature	Triangular	2100K 2400K 2540K	
2	Core (Fuel) Component Failure Parameters	Triangular	2400K 2500K 2700K	
3	Candling Heat Transfer Coefficients	Linear	6750. 7500. 8250.	
4	Candling Secondary Material Transport Parameters	Triangular	0. 0.2 0.5	
5	Molten Clad Drainage Rate	Triangular	0.1 0.2 1.0	
6	Time Constants for Radial Debris Relocation	Triangular	180. 360. 720.	
7	Containment Convection Heat Transfer Multiplier	Triangular	1.0 1.4 2.0	
8	Chemical Form of Iodine	log-normal	μ=-9.94, σ=0.28	
9	Chemical Form of Cesium	Beta (0<; <1.0)	a=9, β=3	
10	Dynamic Shape Factor	Beta	a=1, β=5	

(INS is a Cornerstone for a Safe Korea

Calculation Results

Calculation Results – Base Case

- Release combination of Cs/Mo was not considered.
- Iodine
 - Iodine Total Mass in Containment
 - Iodine release Fraction in Containment

Calculation Results – Base Case

- Cesium
 - Cs Total Mass in Containment
 - Cs Total Airborne Mass in Containment
 - Airborne mass / Total mass $\approx 1/20 = 0.05$

Calculation Results – Base Case

- Cesium
 - Cs Total Mass Fraction in Containment
 - Cs Total Airborne Mass Fraction in Containment
 - CsI (group 16)

Evaluation of Cesium Criteria – Base Case

- Amount of Cesium, Iodine & Molybdenum in OPR1000 Core (EOL)
 - Total Cesium Class Mass : 278.3 kg
 - Total Iodine Class Mass : 18.8 kg
 - Total Molybdenum Class Mass : 357.7kg
- Cesium inside Containment
 - Maximum : ~9kg
 - Maximum Airborne : ~0.5kg
- Cs release from containment w/o failure
 - Amount of Cesium released (Total Mass based)
 - 9kg * 0.001 = 9g /day
 - 3 days : 27g
 - Amount of Cesium released (Airborne Mass based)
 - 0.5kg * 0.001 = 0.5g /day
 - 60 days : 30g

Calculation Results – Add RNCLS

- Release combination of Cs/Mo was considered.
- Iodine
 - Iodine Total Mass in Containment
 - Iodine release Fraction in Containment

50

Calculation Results – Add RNCLS

- Cesium
 - Cs Total Mass in Containment
 - Cs Total Airborne Mass in Containment
 - Airborne mass / Total mass $\approx 1/15 = 0.07$

Calculation Results – Add RNCLS

- Cesium
 - Cs Total Mass Fraction in Containment
 - Cs Total Airborne Mass Fraction in Containment
 - CsI (group 16), Cs₂MoO₄ (group 17)

Evaluation of Cesium Criteria – Add RNCLS

- Amount of Cesium, Iodine & Molybdenum in OPR1000 Core (EOL)
 - Total Cesium Class Mass : 278.3 kg
 - Total Iodine Class Mass : 18.8 kg
 - Total Molybdenum Class Mass : 357.7kg
- Cesium inside Containment
 - Maximum : 30kg
 - Maximum Airborne : 1.5kg
- Cs release from containment w/o failure
 - Amount of Cesium released (Total Mass based)
 - 30kg * 0.001 = 30g /day
 - 1 day : 30g
 - Amount of Cesium released (Airborne Mass based)
 - 1.5kg * 0.001 = 1.5g /day
 - 20 days : 30g

Sensitivity Study Summary for RNCLS

- RNCLS
 - Class combination : [Cs : Mo]
 - $-Cs_2MoO_4: 2Cs + 1Mo => [1:0.5] or [2:1]$
- Cs Total Mass / Mass Fraction in Containment Summary

Cs : Mo	Total mass of Cs in containment (kg)	Mass Fraction of Cs in Containment to total Cs inventory	Mass Fraction of Cs in Containment air to total Cs inventory
N/A	~10	~0.035	~0.0025
1:0.5	~33	~0.12	~0.003
1:1	~29	~0.105	~0.003
0.5 : 1	~25	~0.09	~0.003
2:1	~33	~0.12	~0.003

Sensitivity Study for RNCLS

• Cs Total Mass / Mass Fraction in Containment

Sensitivity Study for RNCLS

• Cs Total Mass / Mass Fraction in Containment

Cs: Mo = 1:1

(INS is a Cornerstone for a Safe Korea

Concluding Remarks

Concluding Remarks

- MELCOR source term uncertainty calculation had been performed preliminary.
- MELCOR default values with descriptions are needed : **Release combination** of Release Model.
 - RN Combo Class 1 : CS, I2 => CsI

- RN Combo Class 2 : CS, MO => Cs₂MoO₄

- OPR1000 severe accident source term was analyzed in view of Cesium compared to Cs release goal in Korean Nuclear Safety Act.
- In future, well-modified MELCOR input will be used to final calculation including accident management operator actions.

원スト력 안전 KINS>+ 안들어 같니다!

Thank You

