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1. Introduction 

 
In Nuclear Power Plants (NPPs), various accidents 

can cause coolant leaks or losses, further expose the 
reactor core, and cause safety systems to malfunction 
[1]. This can prevent the core from cooling, eventually 
leading to core melting and a severe accident. A severe 
accident is an accident in which NPPs designed 
considering Design Basis Accidents (DBA) exceed the 
design basis and cause the core to melt down. 

Since the operator’s actions are important in a severe 
accident, guidelines that provide appropriate 
instructions to the operators are the Severe Accident 
Management Guidelines (SAMGs). SAMGs are 
guidelines that enable the operator of NPPs to identify 
severe accident symptoms and analyze the cause by 
severe process variables, and take appropriate 
mitigation actions when a severe accident occurs. 
SAMGs suggest variables and thresholds instructing the 
operator to take mitigation actions when an abnormality 
occurs. Among them, safety variables were suggested to 
maintain the integrity of the containment. 

The integrity of the containment is a very important 
factor of safety. In high-pressure accidents such as a 
small Loss Of Coolant Accident (LOCA), the released 
corium causes direct containment heating, which 
directly increases the temperature and pressure of the 
containment. In addition, the hydrogen gas generated by 
the chemical reaction of corium increases the 
temperature and pressure of the containment [1]. As the 
hydrogen concentration and pressure of the containment 
reach the threshold, it can become factors that threaten 
the integrity of the containment. This can reduce the 
reliability of the information instrumented in NPPs and 
lead to a potentially explosive situation. Therefore, it is 
important to provide time for the operator to take 
actions before each variable reaches the threshold. In 
this study, the hydrogen concentration and pressure of 
the containment were selected as targets, and their 
predictions were conducted to support the operators. 

In this study, the Cold-leg LOCA scenario, the Hot-
leg LOCA scenario, and the Steam Generator Tube 
Rupture (SGTR) scenario data were acquired and used 
through the Modular Accident Analysis Program 
(MAAP) code. Each scenario considered the break 
location and the operation of the safety system. The 
Artificial Intelligence (AI) model, Temporal 

Convolution Network (TCN) [2] was used to predict the 
containment pressure and hydrogen concentration. The 
TCN model was used to predict the targets after 240 
minutes from the current time. In addition, the Monte 
Carlo (MC) dropout method was used to evaluate the 
uncertainty of the TCN model and obtain a confidence 
interval. 

 
2. Methods 

 
This section describes the TCN method used for 

prediction and the MC dropout method for evaluating 
prediction uncertainty. 

 
2.1 Temporal Convolution Network 
 

In this study, the TCN method is applied to predict 
the hydrogen concentration and pressure of containment, 
which are safety variables of the containment. 

TCN is a methodology that applies the convolution 
neural network structure to time series data. It is a 
model proposed to overcome the limitations of existing 
recurrent neural network-based models. TCN uses 
multiple filters to process the input sequence in parallel. 
This overcomes the low learning rate and long-term 
dependency problems in recurrent neural network-based 
models. 

TCN can perform detailed tasks using a hierarchy of 
temporal convolutions [2]. In particular, dilated TCN, 
including dilated convolution, was used in this study. 
Dilated convolution adjusts the interval of input data to 
which the filter is applied, allowing a more 
comprehensive range of inputs to be accommodated. Eq. 
(1) shows the equation of dilated convolution. 
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 x t i represents the input at time  t i , 

( )f i represents the weight of the filter, and k  

represents the size of the filter. r  represents the dilation 
rate, which means the interval of the kernel. As r  
increases, it accommodates values located further apart. 
In addition, adding the output of each layer to the 
original input through residual connection stabilizes the 
learning of the network and helps it learn effectively.  
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In this study, dilated TCN was used, and the dilation 
rate was set to a range of 1 to 4, enabling learning of 
time series patterns in various ranges. In addition, 
residual connections were used to prevent the gradient 
vanishing problem and increase the stability of the 
model. Fig. 1 shows the structure of dilated TCN. 

 

Fig. 1. Structure of dilated TCN model. 
 

2.2 Monte Carlo Dropout 
 

As AI research increases, the need for quantifying 
uncertainty is emerging [3]. Uncertainty quantification 
increases the reliability of AI models and can be a safety 
technology for continued use [4]. In this study, the MC 
dropout method was used to quantify the uncertainty of 
the TCN model. 

The commonly used dropout method is one of the 
techniques used to prevent AI models from being 
overfitted. The MC dropout method used in this study 
quantifies uncertainty by activating dropout even during 
the testing process. 

In this study, 0.4 was selected as the dropout 
probability. After the training process, N  iterations of 
prediction are performed in the test step with dropout 
activated. Different dropout masks are applied to the 
data set with a specific probability to generate various 
prediction results in this process. Since 100 iterations 
were selected, 100 prediction results were generated for 
each data set.  

As a result, the average of the results obtained 
through N  iteration predictions is used as the final 
prediction value, and the variance of the prediction 
results expresses the uncertainty of the prediction. The 
final prediction value and the variance of the prediction 
results are shown in Eqs. (2) and (3). 
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The confidence interval can be calculated using the 
values derived from Eqs. (2) and (3). It is used as an 
essential indicator of how confident the model is about 
the predicted results at a certain confidence level. Eq. 
(4) expresses the confidence interval. 

 

ˆ
MCCI y Z v    (4) 

 
Z  represents the percentile corresponding to a 

certain confidence level in the standard normal 
distribution, and in this study, a 95% confidence level 
was adopted. The confidence interval is derived by 
multiplying the Z  value by the standard deviation, 
which is the square root of the variance.  

The uncertainty of the prediction affects the range of 
the confidence interval. Therefore, by quantifying the 
uncertainty in model predictions, the reliability of the 
model can be evaluated, thereby enhancing safety. 

 
3. Data 

 
In this study, hydrogen concentration and pressure of 

containment predictions were performed in LOCA and 
SGTR scenarios. Data were acquired using the MAAP 
code to make the predictions. The MAAP code is 
software that can simulate and analyze reactor accident 
scenarios, model various accident situations, and 
calculate variables.  

Data for each accident scenario was acquired by 
adjusting the break size at a constant ratio. Specifically, 
break size, break location, and safety system operation 
were considered, and data for 86,400 seconds (1 day) 
were acquired for each scenario through the MAAP 
code. However, since the collected data was very large, 
the AI model learning efficiency decreased, so the data 
in seconds was converted to data in minutes. To this end, 
the data was grouped at 60-second intervals, and the 
average value was calculated within each group, 
converted to minute data, and applied to the model 
training process.  

In this study, the safety system was specified as a 
high-pressure safety injection system, a low-pressure 
safety injection system, a containment spray system, and 
an auxiliary feedwater system. It turned on/off for each 
scenario (It was assumed that recirculation was 
impossible). The data were divided into train, validation, 
and test datasets. During the train and test processes, it 
was randomly dropped with a probability of 0.4 set 
arbitrarily by the MC dropout method. 

The input variables for the prediction target were 
selected using the Pearson correlation coefficient 
analysis. The Pearson correlation coefficient measures 
the linear relationship between variables and expresses 
the strength and direction of the relationship as a value 
between -1 and 1. The closer it is to -1 and 1, the 
stronger the correlation. In this study, variables with a 
correlation coefficient value less than -0.4 or greater 
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than 0.4 were selected as input variables. Through this, 
the predictions of hydrogen concentration and pressure 
used seven input variables (The seven input variables 
are different in each predicted target).  

 
4. Results 

 
This study used the TCN model to predict the 

hydrogen concentration and pressure of the containment 
in LOCA and SGTR scenarios. The predictions were 
conducted 240 minutes (4 hours) ahead of the current 
time, and the uncertainty was quantified using the MC 
dropout method. Root Mean Squared Error (RMSE), 
Mean Absolute Error (MAE), and R-squared ( 2R ) were 
used as model performance evaluation metrics for the 
prediction results. The evaluation indices are shown in 
Eqs. (5) to (7). 
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In the equation, y  represents the actual value of the 

prediction target, ŷ  represents the predicted value, and  

meany  represents the average of the predicted values. 

The lower the error values, and the closer 2R  is to 1, 
the better the performance of the model.  

Figs. 2 to 7 show the results of predicting the 
hydrogen concentration and pressure of the containment 
for each scenario and calculating the uncertainty. In the 
graph, the blue line represents the actual value of the 
prediction target, and the red line represents the value 
predicted by the model 240 minutes ahead of the current 
value. In addition, the area around the predicted value 
represents the confidence interval indicating the 
uncertainty of the model, and in this study, it means a 
95% confidence level. The green line is when the core 
exit temperature reaches 649℃, which is the SAMGs 
entry condition and is the estimated point when a severe 
accident will occur. The two purple lines in the 
prediction of pressure results are the pressure thresholds 
that require containment condition control suggested by 
SAMGs. Threshold 1 is approximately 392,975 Pa , 
which is the threshold that may threaten the containment, 
and threshold 2 is approximately 841,142 Pa , which is 
the threshold that requires immediate implementation of 
containment condition control. Additionally, the purple 
line in the prediction of hydrogen concentration results 
is the hydrogen concentration threshold that requires 

hydrogen control inside the containment, which is 
0.05%.  

The prediction results show that the TCN model is 
highly accurate in each scenario, even when predicting 
the future with a long time-step of 240 minutes. In the 
case of pressure prediction, it generally showed high 
accuracy. All of them show a trend of exceeding 
threshold 1 and approaching threshold 2 due to the 
accident progression (Among the test results, there are 
cases where threshold 2 was reached). Pressure 
prediction performs better than hydrogen concentration 
prediction but has a wider confidence interval.   

 

 
Fig. 2. Prediction of pressure results for Cold-leg LOCA 
scenario (Left: safety system inactivating, Right: safety system 
activating). 
 

 
Fig. 3. Prediction of pressure results for Hot-leg LOCA 
scenario (Left: safety system inactivating, Right: safety system 
activating). 
 

 
Fig. 4. Prediction of pressure results for SGTR scenario (Left: 
safety system inactivating, Right: safety system activating). 

 

 
Fig. 5. Prediction of hydrogen concentration results for Cold-
leg LOCA scenario (Left: safety system inactivating, Right: 
safety system activating). 
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Fig. 6. Prediction of hydrogen concentration results for Hot-
leg LOCA scenario (Left: safety system inactivating, Right: 
safety system activating). 
 

 
Fig. 7. Prediction of hydrogen concentration results for SGTR 
scenario (Left: safety system inactivating, Right: safety system 
activating). 

 
The accuracy of the hydrogen concentration 

prediction result is slightly lower than that of the 
pressure prediction. This is because hydrogen is 
affected by various factors in the reactor and shows 
complex chemical reactions. In addition, it is difficult to 
accurately predict the hydrogen concentration because 
the process of removing hydrogen by passive auto-
catalytic recombiner is sensitive to various 
environmental variables. These factors affect the 
prediction of hydrogen concentration. Table I shows the 
performance evaluation results for each scenario of the 
prediction model. 

 

Table I: Prediction performance of TCN model 

Predicted 
targets 

Scenario 
Safety 
system  

RMSE MAE R² 

Containment 
pressure 

Cold-leg 
LOCA 

On 0.0054 0.0039 0.99 

Off 0.0043 0.0035 0.99 

Hot-leg 
LOCA 

On 0.0039 0.0030 0.99 

Off 0.0047 0.0037 0.99 

SGTR 

On 0.0086 0.0056 0.97 

Off 0.0081 0.0056 0.99 

Containment 
hydrogen 

concentration 

Cold-leg 
LOCA 

On 0.0172 0.0129 0.96 

Off 0.0253 0.0152 0.97 

Hot-leg 
LOCA 

On 0.0057 0.0047 0.99 

Off 0.0124 0.0108 0.98 

SGTR 

On 0.1435 0.0621 0.31 

Off 0.0263 0.0184 0.80 

 
In terms of pressure prediction, we need to reduce the 

uncertainty of the model to increase its reliability. In 
terms of hydrogen concentration prediction, the 
prediction performance of the model should be 
increased. Based on this information, performance 
improvement is needed in this study. 
 

5. Conclusions 
 

This study aims to support operators in responding 
appropriately when a severe accident occurs by 
predicting the hydrogen concentration and pressure of 
the containment. To this end, the TCN model, which is 
effective in analyzing time series data, was used, and the 
uncertainty was quantified using the MC dropout 
method to increase the reliability of the prediction.  

As a result, the TCN model was confirmed to predict 
key variables with high accuracy and especially showed 
high performance even when predicting time steps 
further than the present. In addition, the reliability of the 
prediction results was verified through uncertainty 
quantification, and it was implied that it could provide 
important information for effective response in case of a 
severe accident.  

This technology allows operators to predict hydrogen 
concentration and pressure in real-time and take 
proactive actions to maintain the integrity of the 
containment. It can also be applied to various accident 
scenarios, and it will be an important key to increasing 
the reliability of AI and enabling continuous use 
through uncertainty quantification. 

The results of this study can be utilized as part of the 
operation support system, such as the early warning 
system of NPPs. This would allow for a proactive 
response before reaching the threshold, helping to 
prevent or mitigate accidents effectively. 

In future studies, various accident scenarios and data 
should be used, and the performance of the model 
should be improved. In addition, improved methods 
should be sought to narrow the confidence interval to 
increase the reliability of the model. Furthermore, the 
optimal prediction model can be selected through 
performance comparison with other AI techniques. This 
will further enhance the reliability and efficiency of 
severe accident management. 
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