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1. Introduction 

 
The Reactor Protection System (RPS) is one of the 

instrumentation and control systems that monitors the 

status of the safety-related variables and trips the reactor 

when these values reach predetermined setpoints. RPS 

consists of several processors and devices such as 

bistable processors, coincidence processors, and 

interface and test processors based on electronic 

components and circuits. In the case of the RPS in the 

APR-1400 Nuclear Power Plants (NPPs), POSAFE-Q 

PLC is utilized for these processors. Currently, these 

instrumentation and control systems are checking their 

integrity through self-diagnostic functions, periodical 

tests according to maintenance plans, and function and 

performance checks during the overhaul period to 

prevent accidents due to failures. However, integrity can 

only be checked for limited functions, and there are 

limitations in assessing integrity during the operation of 

the NPPs. Since malfunctions in the RPS are closely 

related to the safety of NPPs, Prognostics and Health 

Management (PHM) technologies are necessary to 

prevent potential component failures during normal 

operation. PHM technologies include device diagnostics 

and prediction, and this study focuses on the prediction 

aspect. 

Therefore, in this study, the Remaining Useful Life 

(RUL) prediction using data-based methods was 

performed for the electronic components of the 

POSAFE-Q PLC in the RPS. The POSAFE-Q PLC in 

the RPS consists of 12 modules and hundreds of 

electronic components. Among them, the RUL 

prediction was performed for the photocoupler, which is 

a component with a high probability of failure. The data 

are accelerated aging data obtained by performing 

accelerated aging tests under high-temperature 

conditions. The RUL prediction was performed using 

the Long Short-Term Memory (LSTM) with Monte 

Carlo (MC) dropout method, which was utilized for 

preliminary modeling in a previous study [1-3]. 

However, the data obtained from accelerated aging 

under a single temperature condition corresponds to a 

linear equation where the RUL value changes over time. 

Therefore, a genetic algorithm [4] was additionally 

utilized to estimate the slope and intercept of the linear 

equation, and RUL prediction was performed based on 

these parameters. In this study, the RUL prediction 

results of the derived linear equation and the LSTM 

with MC dropout model were compared and evaluated. 

We also discuss the future works for performing 

artificial intelligence-based RPS failure prediction.  

 

2. Methods 

 

In this study, two methods were utilized to perform 

RUL prediction for photocouplers, which is a 

component vulnerable to failure, for predicting RPS 

failures. The two methods are LSTM with MC dropout 

and genetic algorithm. LSTM with MC dropout was 

previously used for preliminary modeling in RUL 

prediction [3], and this method was applied based on the 

acquisition of RPS failure data. This method provides 

both RUL prediction results and their uncertainties. The 

genetic algorithm was applied to estimate the optimized 

coefficients for a linear equation by assuming that the 

variation in RUL values based on the given data follows 

linearity.  

 

2.1 LSTM with Monte Carlo Dropout 

 

LSTM with MC dropout has a structure in which 

dropout layers are added between LSTM layers, 

allowing for the estimation of uncertainty in the 

prediction results. The structure of LSTM with MC 

dropout is shown in Fig. 1. LSTM is a widely used 

method in the RUL prediction field, specialized for 

processing sequence data [1]. LSTM can effectively 

learn long-sequence information by regulating the flow 

of sequence information through its memory cells. This 

regulation is achieved through input, forget, and output 

gates within the memory cells. The gates selectively 

combine new and past information to ultimately derive 

the output for the current sequence. RUL prediction is 

performed based on the structural characteristics of 

LSTM, and the uncertainty of the prediction results is 

estimated by adding dropout layers between LSTM 

layers. Unlike conventional dropout techniques, MC 

dropout activates dropout layers during both training 

and testing [2]. It means that dropout layers remain 

active during inference, leading to different prediction 

results for the same input data. These prediction results 

have a distribution form, and their mean and standard 

deviation are used to estimate the final prediction value 

and its uncertainty. In this study, 100 prediction results 
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were derived for the same input data, and uncertainty 

was estimated using these results. 
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Fig. 1. Structure of LSTM with MC dropout. 

 

2.2 Genetic Algorithm 

 

The genetic algorithm is an optimization method that 

imitates the evolutionary processes of biological 

organisms to find optimal solutions [4]. In this study, a 

genetic algorithm was utilized to optimize the slope and 

intercept values based on the assumption that the RUL 

values exhibit linearity over time. The genetic algorithm 

proceeds in initialization, fitness evaluation, termination 

condition verification, and population generation. 

Specifically, the initial population of chromosomes is 

randomly generated, and their fitness is evaluated. Here, 

the initial chromosome set consists of random values 

representing the slope and intercept of the linear 

equation. The fitness function is an indicator that 

measures how well a chromosome solves a problem. In 

this study, Mean Squared Error (MSE) was used as a 

fitness function. Since a higher fitness value indicates a 

solution closer to the optimal values, the negative value 

of MSE was used as the fitness function. The fitness 

function utilized is expressed as Eq. (1). 

 

 (1) 

where,  is the real RUL value and  is the predicted 

value.  
 

After evaluating the fitness of the initial population, 

the termination condition is checked. If the termination 

condition is not met, genetic operations such as 

selection, crossover, and mutation are performed to 

generate the next generation of the population. The 

fitness of the generated population is then evaluated, 

and the termination condition is checked again. This 

process is repeated until the termination condition is 

satisfied. The algorithm progressively finds better 

solutions, with termination conditions that can include 

reaching a maximum number of generations or 

observing no change in fitness values. In this study, the 

termination condition was set to reach the maximum 

number of generations. After termination, the solution 

corresponding to the highest fitness value is identified 

as the optimal solution.  

 

3. Data Preprocessing 

 

The photocoupler is a component vulnerable to 

failure within RPS, and the accelerated aging data were 

utilized. Due to limitations in obtaining failure data 

from actual NPPs, Korea Atomic Energy Research 

Institute established the testbed and performed 

accelerated aging tests on the photocouplers. The 

accelerated aging tests were conducted for 

approximately three months on 40 photocouplers under 

130℃ conditions. Table I shows the detailed data 

description. The photocoupler is a component that 

transmits electrical signals as light, and its performance 

degradation can be assessed through the current transfer 

ratio (CTR). CTR is the ratio of the current in the light-

emitting element to that in the light-receiving element. 

The failure criteria for photocouplers vary between 

manufacturers.  

Table I: Data description 

Accelerated aging test 

information 
Description 

Test period About 92 days 

Number of parts 40 

Acquisition frequency 5 seconds 

 

The accelerated aging data for the 40 photocoupler 

components used in this study showed a noticeable drop 

in CTR values over time for only some components 

rather than all. This is expressed as a distribution at 

each time interval. In this study, a conservative 

approach was adopted by converting the CTR values 

corresponding to the 20th percentile of the CTR values 

at each time point among the 40 components. Fig. 2 

shows the distribution at each time interval, and the red 

line shows the 20th percentile of the CTR value. Based 

on this converted data, the failure criterion is defined as 

95% of the CTR value when reaching 130℃. The 

failure time derived through this is approximately 88 

days at 130℃. However, the failure criterion in this 

study is a value set based on the acquired data and may 

differ from the actual life of the photocoupler. The 

failure criterion needs to be continuously reviewed and 

refined in the future. 



Transactions of the Korean Nuclear Society Autumn Meeting 

Changwon, Korea, October 24-25, 2024 

 

 

 
Fig. 2. CTR values of photocouplers according to the 

accelerated aging time at 130℃. 

 

The RUL values according to the aging time were 

calculated based on the derived photocoupler failure 

occurrence time. The RUL values are calculated through 

the difference between the failure occurrence time and 

the aging time. The input and output variables for 

predicting the RUL of the photocoupler are aging time 

and RUL values, respectively. Data for developing a 

prediction model were converted to 1-minute interval 

data and divided into train and test data. The test data 

corresponded to 10% of the total data and were 

extracted at a specific interval. Also, the data were 

normalized using the standardization method to apply to 

the LSTM with MC dropout model. The normalized 

input data were in the form of (No. of data, time 

sequence, aging time) and were input to the LSTM with 

MC dropout model to finally derive the RUL value. 

 

4. Results and Discussion 

 

RUL prediction of photocoupler was performed using 

LSTM with MC dropout and genetic algorithm. LSTM 

with MC dropout model was developed by varying the 

number of units and layers in 10 input sequences. The 

genetic algorithm found the optimal values for the slope 

and intercept of the linear equation for maximizing the 

fitness function. The RUL prediction results based on 

these two methods were derived from the model and 

parameters that exhibited the best performance. 

 

4.1 Evaluation Metrics  

 

Mean Absolute Error (MAE) and R-square (R2) were 

used as performance evaluation metrics for RUL 

prediction. These evaluation metrics were used to 

evaluate and compare the performance of RUL 

predictions derived from two different methods applied 

in this study. Each metric is calculated as in Eqs. (2) and 

(3). 

 

 (2) 

 (3) 

where,  is the mean value of the real RUL values. 

Lower values of MAE and higher values of R2 indicate 

better performance. 

 

Also, α-λ accuracy [5] was additionally utilized to 

evaluate the accuracy of RUL prediction. α-λ accuracy 

evaluates the performance of a model by assessing 

whether the predicted RUL values are within a specific 

allowable error margin. α-λ accuracy is calculated as in 

Eq. (4) and has a binary value. Accordingly, the 

accuracy of the total data is calculated as the mean value.   

 

 (4) 

where,  is the probability mass of the predicted 

probability density function within the α-bounds. α-

bound set in this study is  of the real RUL value. 

β is the minimum desired probability threshold, which is 

a value between 0 and 1.  

 

4.2 RUL Prediction Results of Photocoupler 

 

Table Ⅱ shows the RUL prediction performance in 

the optimal model and linear equation. The RUL 

prediction performance based on the optimized linear 

equation using the genetic algorithm is shown to 

outperform that of the LSTM with MC dropout model. 

Since the RUL value is calculated based on the 

difference between the fault time and the current time, 

and only the acceleration time is used as an input 

variable, it corresponds to a straightforward linear 

equation. Although deep learning methods generally 

perform well in handling nonlinear problems, the 

current problem is inherently linear. Therefore, a simple 

linear approach may be more appropriate than a 

complex deep learning method. Nevertheless, the 

performance difference between the two methods is not 

significant. Both methods predict accurately with low 

errors. In actual NPPs, temperature variations are 

expected. Therefore, in the future, it is necessary to 

address the nonlinear problems that account for both 

time and temperature variations.  

 

Table Ⅱ: Comparison of RUL Prediction Performance 

Method 

Train data Test data 

MAE 

(days) 
R2 MAE 

(days) 
R2 

LSTM with 

MC dropout 
0.1345 0.9996 0.1336 0.9996 

Genetic 

algorithm 
0.0934 0.9999 0.0934 0.9999 

 

Fig. 3 shows the prediction results for the developed 

LSTM with MC dropout model and its uncertainty 

region. The prediction results of the LSTM with MC 
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dropout model are derived in the form of a distribution 

at each time. It allows evaluation of the α-λ accuracy 

described in Eq. (4). Since the α-λ accuracy also 

depends on the β value, this study evaluated accuracy 

based on various β values. Fig. 4 shows α-λ accuracy 

according to β value for test data. Due to the 

characteristics of α-λ accuracy calculation, the accuracy 

decreases as the β value increases. This is because the 

prediction accuracy is considered accurate only if the 

probability that the predicted distribution falls within 

the α-bounds must be greater than or equal to the β 

value. In Fig. 4, the RUL prediction accuracy of the 

photocoupler was over 80% for most β values, 

indicating excellent prediction performance. 

α-λ accuracy is also a key performance metric for 

determining the performance of the optimal model. It is 

important to set appropriate α-bound and β values. 

When developing RUL prediction models in the future, 

utilizing this metric to select the optimal model is 

expected to improve performance in RUL predictions. 

 

 
Fig. 3. RUL prediction results using the LSTM with MC 

dropout method. 

 

 
Fig. 4. α-λ accuracy according to the β value for the test data. 

 

5. Conclusions and Future Work 

 

In this study, RUL prediction was performed for the 

photocoupler, which is a component with a high 

probability of failure, to predict failures in RPS based 

on data-based methods. The data were obtained by 

accelerated aging tests of 40 photocouplers under 130℃. 

The failure criterion was defined as the CTR value 

corresponding to 95% of the CTR value when the 

accelerated aging temperature reached 130℃. Since 

RUL prediction was performed using only the aging 

time as an input variable, it is expressed as a linear 

equation. LSTM with MC dropout and genetic 

algorithm were used to predict RUL values, and the 

performance comparison was performed for predicted 

RUL values. Both methods accurately predicted RUL, 

and the potential for improving performance was 

evaluated by reviewing and applying performance 

evaluation metrics for RUL prediction. 

However, the photocoupler accelerated aging data 

used in this study do not account for temperature 

variations, and additional steps are required to convert 

these accelerated aging data into equivalent time under 

usage conditions. Furthermore, the failure criterion also 

needs to be discussed in more detail. In the future, RUL 

predictions should be performed considering 

temperature variants and usage conditions.  Additionally, 

we plan to develop models for overall RPS failure 

prediction by utilizing accelerated aging test data for 

significant components and modules, which is currently 

being performed. 
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