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1. Introduction 

 
To enhance the safety and efficiency of a reactor core, 

it is crucial to optimize the fuel assembly loading pattern 
(LP). However, given the vast number of potential LPs, 
evaluating every possible LP is impractical. Although 
methods such as simulated annealing (SA) can be 
employed to search for an optimal solution, they still 
necessitate a substantial number of LP evaluations. To 
address this challenge, a screening technique utilizing a 
simplified model [1] has been proposed. This method can 
evaluate LPs at a much faster rate compared to traditional 
3D deterministic calculations, thus enabling more rapid 
LP optimization. 

Previous research has explored the use of 
Convolutional Neural Networks (CNNs) for LP 
evaluation [2]. However, CNNs are designed to analyze 
images using convolutional filters of fixed sizes, making 
them more suited for extracting features from relatively 
small regions. This characteristic of CNN limits their 
efficiency when dealing with large LP images where 
each pin is represented as a pixel. 

In this study, we aim to enhance the accuracy of LP 
evaluations by utilizing the Vision Transformer (ViT) 
model [3]. ViT divides the entire image into small 
patches and captures the relationships between all 
patches using a self-attention mechanism. This process 
helps in extracting features over a broader range 
compared to the filter-based approach of CNNs. By 
integrating ViT, we have improved the efficiency of the 
screening technique, thereby enabling faster execution of 
SA to identify the optimal LP. 
 

2. Description of AI Models Training 
 

Two AI architectures, CNN and ViT, were used to 
develop the models. The dataset for training these 
models was generated using the STREAM/RAST-K 2.0 
[4] code system, based on LPs of OPR-1000. 

 
2.1 Training Dataset 

 
The LPs for the training dataset were generated by 

shuffling fuel assemblies (FAs) based on the reference 
LP shown in Figure 1. The specifications of the fuel 
assemblies in the reference LP are shown in Table 1. The 
method for shuffling the FAs is illustrated in Figure 2. 
First, the FAs located at the center of the core (region 0) 

do not participate in the exchange. Next, FAs in region 1 
and FAs in region 2 are swapped separately. If the 
exchange of FAs in Region II disrupts the 8th symmetry 
of the FA types, the symmetry is maintained by swapping 
the corresponding FAs in the 8th symmetric region. 
Finally, two FAs of identical type in region 1 are selected 
and exchanged with two FAs in region 2. 

 

 
Fig. 1. The reference LP of OPR-1000 [2]. Green indicates 

fresh fuel, yellow indicates once-burnt, and red indicates 
twice-burnt. 

 
Table I: Specifications of fuel assemblies in the reference 

LP [2]. 

FA 
Type 

Fuel 
Enrichment 

[wt.% U-235] 
No. Rods Burnable Poison 

Fraction 
[wt.% Gd2O3] 

Normal Zoned Zoned BP 

D0 4.50 4.01 52 0 - 

D2 4.50 4.01 52 12 6.0 

D6 4.50 4.01 52 12 8.0 

E0 4.64 4.10 52 0 - 

E1 4.64 4.10 52 8 6.0 

E2 4.64 4.10 52 12 6.0 

E4 4.64 4.10 52 16 8.0 

E6 4.64 4.10 52 12 8.0 

E7 4.64 4.10 52 20 8.0 

F0 4.65 4.10 52 0 0.0 

F1 4.65 4.10 52 8 6.0 

F4 4.65 4.10 52 16 8.0 

F6 4.65 4.10 52 12 8.0 

F7 4.65 4.10 52 20 8.0 

FC 2.20 - 0 0 - 
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Fig. 2. The regions of LP and shuffling methods. Red 

indicates region 1 swapping, green indicates region 2 
swapping, and blue indicates region 1 – 2 swapping. 

 
A total of 100,000 LPs were generated. For each LP, 

the cycle length and peaking factor were calculated using 
RAST-K code. The cycle length is defined as the 
Effective Full Power Day (EFPD) at which the critical 
boron concentration reaches 10 ppm, and the peaking 
factor represents the maximum value of Fxy in the cycle. 
The distributions of the calculated cycle length and 
peaking factor are shown in Figure 3 and 4. 

 

 
Fig. 2. Distribution of the cycle length. 
 

 
Fig. 3. Distribution of the peaking factor 
 
The features provided to the AI models differs 

between the CNN and ViT approaches. For the CNN, 

assembly-wise data is used, which includes the average 
fuel enrichment, the number of BP rods, the mass 
fraction of burnable poison, and the initial average 
burnup for each assembly, as shown in Figure 3. In 
contrast, the ViT uses pin-wise data, which includes the 
fuel enrichment, mass fraction of burnable absorber, and 
the 4-unit assembly burnup for each pin, as illustrated in 
Figure 4. Based on these features, Two models were 
trained with each architecture, the cycle length prediction 
model and peaking factor prediction model. When 
training the models, the entire dataset was split into three 
portions: 80% was used for model training, 10% for 
validation during training, and the remaining 10% for 
testing the model after training was completed. 

 

 
Fig. 3. Example of the features for the CNN model. 
 

 
Fig. 4. Example of the features for the ViT model. 
 

2.2 AI model Training Results 
 

The cycle length prediction model of CNN consists of 
9 convolutional layers with a total of 650K parameters. 
The peaking factor prediction model of CNN, on the 
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other hand, comprises 13 convolutional layers with a 
total of 1500K parameters. 

The cycle length prediction model of ViT consists of 
3 Transformer encoder layers with a total of 350K 
parameters. The peaking factor prediction model consists 
of 9 Transformer encoder layers, with a total of 2,100K 
parameters. 

Both the CNN and ViT models were developed using 
AI modules provided by Pytorch. The detailed 
hyperparameters of the models are listed in Table 2. 

 
Table II: Hyperparameters of the models 

Architecture 
Prediction 

Type 
Hyperparameter Value 

CNN 

Cycle 
Length 

No. Kernel 128 

Kernel Size 3 

Stride Length 1 

No. Layer 9 

Peaking 
Factor 

No. Kernel 256 

Kernel Size 3 

Stride Length 1 

No. Layer 13 

ViT 

Cycle 
Length 

Dimension 256 

No. Head 4 

Feed-Forward 
Dimension 

128 

No. Layer 3 

Peaking 
Factor 

Dimension 256 

No. Head 4 

Feed-Forward 
Dimension 

512 

No. Layer 9 

 
Figures 6 and 7 show the RMS error between the 

predicted and actual values using the validation data 
during the training. It shows that peaking factor model 
using ViT architecture completes their training faster 
than the CNN models. Additionally, for the peaking 
factor, the ViT prediction model shows a lower RMS 
error compared to the CNN model at the point where 
training is completed. On the other hand, for the cycle 
length, both models demonstrate similar RMS error 
progresses. 

Figures 8 and 9 compare the RAST-K calculated 
values with the Ai-predicted values. The two graphs for 
cycle length looks similar, but for the peaking factor, the 
predictions from the ViT model are more closely 
clustered around the actual values. 

 

 
Fig. 6. Training convergence progress of the cycle length 

prediction models. 
 

 
Fig. 7. Training convergence progress of the peaking factor 

prediction models. 
 

 
Fig. 8. Training results of the cycle length prediction 

models. 
 

 
Fig. 9. Training results of the peaking factor prediction 

models. 
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Table 3 presents the relative prediction errors of each 
model. Consistent with the graphical results, there is 
almost no difference between the two models in cycle 
length prediction, but for the peaking factor, The ViT 
model exhibited a relative RMS error of 0.78%, which is 
significantly lower than the 2.65% of the CNN model. 
Additionally, the probability of the relative absolute error 
being within 5% was 99.8% for the ViT model, 
compared to 99.4% for the CNN model. The maximum 
relative absolute error for the ViT model was also lower, 
at 18.90%, compared to 36.37% for the CNN model. 

 
Table III: Prediction error of the models. 

Prediction 
Type 

Architecture 

Relative Prediction Error 
[%] 

RMS Abs. 
Max. 
Abs. 

Cycle 
Length 

CNN 0.12 
99.8 

(Abs. < 
0.5%) 

0.87 

ViT 0.12 
99.3 

(Abs. < 
0.5%) 

0.89 

Peaking 
Factor 

CNN 2.65 
99.4 

(Abs. < 
5.0%) 

36.37 

ViT 0.78 
99.8 

(Abs. < 
5.0%) 

18.90 

 
3. Simulated Annealing with Screening Technique 

 
3.1 Multi-Objective Simulated Annealing 
 

In the LP optimization problem, it is necessary to 
satisfy both the cycle length and peaking factor limits. To 
achieve this, Multi-Objective Simulated Annealing 
(MOSA) was applied [1]. The objective functions for 
cycle length and peaking factor are defined in Equations 
1 and 2, respectively. In the equations, 𝐶𝑌𝐶തതതതതത  and 𝑃𝐹തതതത 
represent the average cycle length and peaking factor 
from the training data, while 𝐶𝑌𝐶  and 𝑃𝐹  are the 
design limit values for the OPR-1000, set at 492 EFPDs 
and 1.60. These two functions are then combined into a 
multi-objective function for the LP, as shown in 
Equation 3. 

(1)  𝐽(𝑋) =  

⎩
⎪
⎨

⎪
⎧ 1 +  

ଵ

തതതതതത
(𝐶𝑌𝐶(𝑋) −  𝐶𝑌𝐶)ଶ,

               𝑤ℎ𝑒𝑛 𝐶𝑌𝐶(𝑋) <  𝐶𝑌𝐶

   
0,                                                      

               𝑤ℎ𝑒𝑛 𝐶𝑌𝐶(𝑋) >  𝐶𝑌𝐶

 

 

(2)  𝐽ி(𝑋) =  

⎩
⎪
⎨

⎪
⎧ 1 +  

ଵ

ிതതതത
(𝑃𝐹(𝑋) −  𝑃𝐹)ଶ,

                  𝑤ℎ𝑒𝑛 𝑃𝐹(𝑋) <  𝑃𝐹

   
0,                                                

                  𝑤ℎ𝑒𝑛 𝑃𝐹(𝑋) >  𝑃𝐹

 

 
(3)  𝐽(𝑋) =  𝐽(𝑋) + 𝐽ி(𝑋) 

 
In the SA process, an initial LP is selected randomly, 

and small perturbations are applied to generate new LPs. 
These perturbations involve swapping fuel assemblies 
within the core, while maintaining the overall symmetry 
of the core configuration. The MOSA algorithm 
evaluates each new LP using the combined objective 
function, and the AI-based screening technique rapidly 
predicts the cycle length and peaking factor for each 
candidate LP. 

The acceptance of a new LP depends on whether it 
improves the objective function or is accepted 
probabilistically based on the SA schedule. This allows 
the algorithm to explore a wide solution space while 
avoiding local minima. The process continues until a 
termination criterion is met, such as a set number of 
iterations or a negligible improvement in the objective 
function over a series of iterations. 
 
3.2 Screening Technique Assisted by AI Model 
 

The screening technique plays a critical role in 
enhancing the efficiency of the SA process. By utilizing 
the AI models trained on CNN and ViT architectures, the 
technique rapidly evaluates candidate LPs, significantly 
reducing the computational cost compared to full 3D 
deterministic calculations. 

However, since AI predictions inherently have some 
error compared to actual values, this must be considered. 
For the LPs used in training, the average error (∆𝐽തതത) and 
standard deviation ( 𝜎 ) of the objective function are 
calculated by comparing the AI-predicted values with the 
RAST-K calculated values. These values are then used 
to define the range within which the true objective value 
of the current LP may exist. The upper (𝐽௫

ଷ (𝑋)) and 
lower (𝐽

ଷ (𝑋)) bounds of this range are determined by 
Equations 5 and 6. 

 
(5) 𝐽௫

ଷ (𝑋) =  𝐽ூ(𝑋) +  ∆𝐽തതത + 2𝜎 
 
(6) 𝐽

ଷ (𝑋) =  𝐽ூ(𝑋) +  ∆𝐽തതത − 2𝜎 
 
If the upper bound of the current LP is lower than the 

acceptable value, the LP is accepted. Conversely, if the 
lower bound is higher than the acceptable value, the LP 
is rejected. If the acceptable value lies within these 
bounds, a 3D calculation is performed. 
 
3.3 Result 
 

Table 4 presents the average results of 20 runs each for 
CNN-based SA and ViT-based SA. In the case of SA 
using CNN, the average efficiency was 99.6%, while the 
efficiency slightly increased to 99.8% when using the 
ViT. This improvement in efficiency can be attributed to 
the more accurate peaking factor prediction model used 
in the ViT-based approach. 

Table 5 shows the average optimal LP in the SA 
results. the cycle length and peaking factor of the 
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Optimal LP showed almost no difference between the 
two approaches. This is likely because the AI models 
have trained with a little of LPs near of the optimal points, 
which causes the accuracy of the model prediction lower. 

 
Table IV: Average of SA results. 

AI 
model 

No. of LP evaluations Efficiency 
[%] RAST-K AI Total 

CNN 148 38962 39110 99.6 

ViT 99 50570 50669 99.8 

 
Table V: average optimal LP in the SA results. 

AI Model 
Cycle Length 

[EFPDs] 
Peaking Factor 

[-] 

CNN 495.5 1.590 

ViT 496.1 1.592 

 
4. Conclusions 

 
This study developed an ViT-assisted screening 

technique to enhance the efficiency of SA for optimizing 
the LP of the OPR-1000 reactor. Comparing CNN-based 
and ViT-based approaches, the ViT model showed a 
slight improvement in efficiency (99.8% vs. 99.6%) due 
to more accurate predictions, especially for the peaking 
factor. Both approaches yielded similar optimal LPs, 
indicating that the AI model need more data nearing the 
optimal LP. 

In future research, we plan to incorporate the optimal 
LP obtained through SA into the AI training dataset, 
aiming to develop models capable of performing more 
accurate evaluations in the vicinity of the optimal LP 
region. By adding more data near the optimal region 
compared to the existing dataset, the AI will be able to 
focus on additional learning in that area, leading to more 
precise LP evaluations. This approach is also expected to 
enhance the efficiency of the screening technique in the 
SA process, allowing for the discovery of more optimal 
LPs in a shorter time frame. 
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