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1. Introduction 

 
 The progression of a severe accident in a nuclear 

power plant is highly complex, characterized by non-
linear dependencies on various thermal-hydraulic (TH) 
and physical variables, necessitating significant 
computational resources for confident prediction. 
Consequently, artificial intelligence (AI) is increasingly 
being employed for predicting severe accidents in 
nuclear power plants [1]. Once fully trained, AI has the 
potential to significantly lower the computational costs, 
enabling its use as an Accident Management Support 
Tool (AMST) to aid operators in decision-making during 
accidents, thereby minimizing the risk of human error. 
The methodology of accident prediction using AI is 
mainly based on surrogate models that learn from data 
produced by existing severe accident simulation codes. 

The authors’ research team applied DNNs to develop 
a supervised learning-based surrogate model for accident 
prediction [2]. The accident scenario is total-loss-of-
component-cooling-water (TLOCCW) in OPR1000, and 
the length of the time series is 72 hours, which is 
considered in Probabilistic Safety Assessment. The 
model employed the rolling window forecasting method 
to simulate the accident's progression, revealing that as 
the number of time steps increased (corresponding to 
higher time resolution), the accumulated error also 
increased. The previous study found that the 
accumulated error of time series data according to the 
time step of 1 hour, 30 minutes, and 15 minutes was 
checked [3]. In the case of the surrogate model with 15 
minutes interval, the error tends to increase compared to 
1 hour interval model. This finding suggests that accident 
predictions with a time resolution higher than 1 hour 
cannot guarantee the reliability of the surrogate model 
due to excessive error accumulation. Consequently, a 
method is required to convert low-resolution (LR) data 
into high-resolution (HR) data without significant data 
loss. To address this issue, this paper proposes a high-
resolution accident prediction model using SRCNN, a 
deep learning model originally designed for high-
resolution image restoration [4]. 

. 
2. Methods  

 
2.1 Selection of accident scenario 

The accident scenario for training the AI model is the 
total loss of component cooling water (TLOCCW), 

which was previously selected by the previous studies. A 
TLOCCW accident is a failure of all seven safety-related 
components of a reactor. (See Table I.) In generating the 
TLOCCW accident scenario, the following failures of 
safety components were assumed: the RCP seal LOCA 
has an 89.2% chance of failure within the first hour. 
Failures of the HPI, LPI, CSS, and charging pump are 
tied to the depletion of the refueling water storage tank 
(RWST), which is depleted between 7 and 8 hours in 
over 80% of cases, leading to failures during this period. 
Other component failures were assumed to occur 
randomly. 

Table I. List of components that fail at TLOCCW 
Reactor coolant pump (RCP) seal LOCA 

Letdown heat exchanger (HX) 
High-pressure (HPI) injection pump 
Low-pressure (LPI) injection pump 

Containment spray system (CSS) pump 
Motor-driven auxiliary feedwater (MDAFW) pump 

Charging pump 
In addition, three severe accident management 

guidelines (SAMGs) were randomly initiated within 72 
hours. SAMG is a set of protocols developed to guide 
operators in managing and mitigating the consequences 
of severe accidents. If a monitored variable meets a 
certain condition, the corresponding SAMG strategy is 
activated. The three SAMGs employed in this study are 
SG injection (M1), RCS depressurization (M2), and RCS 
injection (M3).  

 
2.2 Data production 

To generate the accident scenario, MAAP 5.03 code 
was used. The MAAP code calculated the progression of 
severe accident over a 72-hour period and returns various 
TH variables. The target TH variables were selected as 
10 variables monitored in the main control room (MCR) 
(see Table II). Therefore, a single accident scenario 
consists of time series data of 10 TH variables from 0 to 
72 hours after the accident occurred. The total dataset is 
composed 11,000 TLOCCW accident scenarios. 

 
Table II. List of target TH variables 

Primary system pressure 
Hot leg temperature 
Cold leg temperature 

Reactor vessel water level (RV WL) 
Steam generator pressure (SG P) 
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Steam generator water level (SG WL) 
Maximum core exit temperature (Max CET) 

Containment pressure (CTMT P) 
Pressurizer pressure (PZR P) 

Pressurizer water level (PZR WL) 
 
The datasets were normalized to values between 0 and 

1, which is necessary for transforming the time series to 
two dimensional images with Gramian Angular 
Summation Field (GASF). Moreover, datasets were 
extracted with 60, 30, 15, and 10-minute intervals for 
training the SRCNN model. 

 
2.3 Imaging and restoring time series: GASF 

Imaging time series is necessary because the required 
input and output dataset for SRCNN are two-
dimensional matrix. Moreover, converted 2D datasets 
should recover into 1D. The transformation and 
restoration are utilized GASF [5]. The GASF is a 
representation of time series data as an image in a non-
Cartesian coordinate system. GASF has two steps to 
convert time series data to a matrix.  

Given the time series 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} , after 
normalization to [0,1] the rescaled time series 𝑋𝑋� 
preserve the one-to-one correspondence through the 
angular transformation (see Eq. (1)). 

 

�
𝜙𝜙𝑖𝑖 = arccos(𝑥𝑥𝚤𝚤�) , 0 ≤ 𝑥𝑥𝚤𝚤� ≤ 1,   𝑥𝑥𝚤𝚤� ∈ 𝑋𝑋�

𝑟𝑟 = 𝑡𝑡𝑖𝑖
𝑁𝑁

, 𝑡𝑡𝑖𝑖 ∈ 𝑁𝑁
  𝐸𝐸𝐸𝐸. (1) 

where 𝑡𝑡𝑖𝑖  is the stamp and 𝑁𝑁  is a constant factor to 
regularize the span of the polar coordinate system. 

GASF is obtained as the sum of the angles of polarized 
time series data at time points 𝑖𝑖 and 𝑗𝑗 (see Eq. (2, 3)). 

 
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  �cos(𝜙𝜙𝑖𝑖 + 𝜙𝜙𝑗𝑗)�                             𝐸𝐸𝐸𝐸. (2) 

            = 𝑋𝑋�′ ∙ 𝑋𝑋� − �𝐼𝐼 − 𝑋𝑋�2
′
∙ �𝐼𝐼 − 𝑋𝑋�2       𝐸𝐸𝐸𝐸. (3) 

where 𝐼𝐼 is the unit row vector [1,1, … ,1]. 
Since the GASF matrix is not dependent on the value 

of 𝑟𝑟, it is also not affected by the value of 𝐿𝐿 used to 
transform the time series into polar coordinates. The 
diagonal elements of a GASF are equal to cos(2𝜙𝜙𝑖𝑖), 
and interval of 𝜙𝜙𝑖𝑖  is �0, 𝜋𝜋

2
� . Therefore, diagonal 

elements are a one-to-one correspondence in interval of 
transformed angle, this allows restoration to a one-
dimensional time series without significant loss.  

The performance of the transformation and restoration 
is evaluated by root mean square error (RMSE) (see Eq. 
(4)). RMSE is the quadratic mean of the differences 
between the time series obtained MAAP code and 
applying transformation and restoration for each TH 
variables. The thermodynamic variable with the largest 
RMSE is PZR WL, which is negligible at 10-12. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
� �𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ,𝑖𝑖 − 𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖�

2𝑁𝑁

𝑖𝑖=1
   𝐸𝐸𝐸𝐸. (4) 

where 𝑁𝑁 is the number of data in one scenario, 𝑦𝑦𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ,𝑖𝑖 
is time series applied transformation and restoration from  

𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖  by using GASF, and 𝑦𝑦𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀,𝑖𝑖  is time series 
predicted by MAAP. 
 
2.4 Structure of the SRCNN model 

The SRCNN framework employed in this study 
comprises two stages (see Figure 1.). The first stage 
involves preprocessing, where a one-dimensional time 
series is transformed into a two-dimensional image, 
followed by upsampling the low-resolution time series or 
matrix. The time series is upsampled using linear 
interpolation, while the matrix is upsampled using 
bilinear interpolation. As a result, the preprocessing 
stage is categorized into two sequences that involve data 
upsampling and conversion, designated as 'UC' and 'CU'. 
The second stage is the super-resolution (SR) process, 
which consists of three convolutional layers. The initial 
convolutional layer applies a relatively small kernel (9x9) 
to extract features from small patches of the upsampled 
image. These extracted features are then passed through 
the second convolutional layer, which uses a medium-
sized kernel (1x1) to perform a non-linear transformation. 
Finally, the third convolutional layer, with a small kernel 
(5x5), merges the non-linearly transformed feature maps 
to reconstruct the final high-resolution image. 

 
Fig. 1 The overall framework of SRCNN consists of 

two stages. 
 

The input data consists of LR time series of one of 
the 10 TH variables, sampled with 1-hour intervals for 
72-time steps, extracted using the MAAP code. In the 
preprocessing stage, this time series is converted and 
upsampled into LR images (matrices) with 30, 15, and 
10-minute intervals. The SRCNN model then 
reconstructs these LR matrices into HR matrices, 
maintaining the same number of time steps as the original 
LR matrices. Consequently, 10 SRCNN models, one for 
each TH variable, are trained for SR at scale factors of 2, 
4, and 6. The datasets are divided into training, validation, 
and test sets with 8:1:1 ratio. 

The performance of the models is evaluated using 
two different metrics: mean square error (MSE) and peak 
signal-to-noise ratio (PSNR). PSNR is a widely used 
metric for assessing the quality of a reconstructed or 
compressed image compared to its original version. It 
quantifies the difference between the original and 
reconstructed images, providing a measure of the fidelity 
of the reconstructed image. PSNR is defined using the 
MSE between the original and reconstructed images. 

The hyperparameters for the SRCNN framework 
were configured as follows: the preprocessing 
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transformation processes 'UC' and 'CU', and the 
configuration of number of CNN filters: (64/32/1), 
(128/64/1), (256/128/1). Optimization was conducted 
across these six combinations. The results indicated that 
for all three scale factors, the 'UC' transformation process 
with the filter configuration (64/32/1) demonstrated the 
best performance (see Table IV). 

Table IV. Error metrics of SRCNN model for best 
performance case 

Time 
intervals 

30min 15min 10min 

error 
metrics 

MSE PSNR MSE PSNR MSE PSNR 

(64/32/1) 
UC 

0.00581 37.09 0.00729 34.90 0.00732 33.503 

 
2.5 Structure of the surrogate model 

To validate the SRCNN model's ability to predict 
high-resolution scenarios without loss, the authors 
compared the time series predicted by applying SRCNN 
to a surrogate model generated with 1-hour intervals with 
the high-resolution time series predicted by the surrogate 
model. The surrogate model was employed Long Short-
Term Memory (LSTM) (see Fig 2.)  

The input layer is composed of 10 TH variables, 7 
component failure times, and 3 SAMG activation times 
at the previous 3-time steps. The hidden layer is 
optimized into 400 nodes and 32 batch size in previous 
study [6]. Consequently, 10 surrogate models, one for 
each TH variable, are trained. As a result, the 1100 
scenarios of each TH variables were generated same with 
test set of SRCNN model. 

 
Fig. 2. The overall framework of surrogate model. 

 
3. Results 

 
To validate the SRCNN model's ability to predict 

high-resolution scenarios without loss, the authors 
compared the time series predicted by applying SRCNN 
to a surrogate model generated at 1-hour intervals with 
the time series predicted by the surrogate model. These 
are based on difference with 1-minute intervals MAAP 
time series. 
 
3.1 Comparison of DTW distance 

First, the dynamic time warping (DTW) distance was 
employed. The DTW distance is an algorithm that 
measure the similarity between two sequences that vary 
in time, a popular way to show the similarity between 
two time series of data. The normalized mean DTW 

distance are compared in Fig. 3 for various time intervals 
and DNN models. 

When comparing the DTW distance between the 
original MAAP data and the predictions for all TH 
variables, it was generally observed that the time series 
generated using the surrogate model and those generated 
with SRCNN (applied to the time series created at one-
hour intervals) exhibited a decreasing DTW distance as 
the time resolution increased.  

 
Fig.3. Normalized mean DTW distances of TH 

variables of surrogate model and SRCNN model. 
 

3.2 Comparison of Peak time 
Next, the authors compared the peaks in the time 

series predicted by the MAAP code with those predicted 
by two AI models to evaluate their ability to preserve the 
peaks in the predicted data. Accurately predicting the 
timing of peaks in TH variables during a severe accident 
is crucial, as these peaks represent the moments closest 
to reactor failure and provide the least margin for safety. 

To detect these peaks, a characterization peak 
function 𝑆𝑆(𝑖𝑖, 𝑥𝑥𝑖𝑖 ,𝑇𝑇) was defined. A point xi in the time 
series 𝑇𝑇 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}  is considered a peak if it 
satisfies specific conditions defined by 𝑆𝑆(𝑖𝑖, 𝑥𝑥𝑖𝑖 ,𝑇𝑇). This 
function calculates the average of the maximum signed 
distances of xi from its k left neighbors and the maximum 
signed distances of xi from its k right neighbors (see Eq. 
(5)). The value of 𝑆𝑆(𝑖𝑖, 𝑥𝑥𝑖𝑖 ,𝑇𝑇) indicates the significance 
of xi relative to its neighboring values [7]. 

 
𝑆𝑆(𝑖𝑖, 𝑥𝑥𝑖𝑖 ,𝑇𝑇) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1,…,𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−𝑘𝑘)+𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖+1,…,𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖+𝑘𝑘)

2
    

𝑖𝑖𝑖𝑖 𝑖𝑖 > 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 ≤ 𝑁𝑁 − 𝑘𝑘                𝐸𝐸𝐸𝐸 (5)  
 

The pseudo-code for detecting the peaks from a times 
series data is shown below.  

 
Algorithm peak detection 
Input T / time series data 

k / window size around the peak 
h / significance multiplier 

Output 
 P / selected peaks 
Start 
 P = ∅; 

 for (i = 1; i < N; i ++) do  
  𝑠𝑠(𝑖𝑖) = 𝑆𝑆(𝑖𝑖, 𝑥𝑥𝑖𝑖 ,𝑇𝑇); 
 end for 
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Compute the mean 𝜇𝜇 and standard deviation 𝜎𝜎 
of all positive values in 𝑠𝑠;  

 for (i = 1; i < N; i ++) do  
  if (𝑠𝑠(𝑖𝑖) > 0 && 𝑠𝑠(𝑖𝑖) − 𝜇𝜇 ≥ ℎ ∗ 𝜎𝜎) 
   then 𝑃𝑃 = 𝑃𝑃 ∪ 𝑥𝑥𝑖𝑖 
  end if 

end for 
for each adjacent pairs of peaks xi, xj in P, do  

  if |𝑖𝑖 − 𝑗𝑗| ≤ 𝑘𝑘 then  
remove smaller value of 
the pair from P  

  end if 
end for 

end start 
In the peak detection method, the parameter ℎ was set 

to 1.7. Given the various time steps in the time series data, 
the parameter 𝑘𝑘 was adjusted to maintain a consistent 1-
hour interval (for 10-minute interval, k was set to 6). This 
adjustment was determined through a process of trial and 
error. 

Next, if the difference between the time points of the 
peak detected in the MAAP time series and the time point 
of the peak detected in the time series predicted by the 
two DNN models is smaller than the time step of the 
DNN model, it was assumed to be true positive detection. 
The peak detection was evaluated using two performance 
metrics: true positive rate (TPR) and precision. The TPR 
indicates the proportion of actual positive cases that the 
model correctly identifies. Precision measures the 
proportion of cases predicted as positive that are indeed 
positive, reflecting the accuracy of the model's positive 
predictions. 

𝑇𝑇𝑇𝑇𝑇𝑇 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                      𝐸𝐸𝐸𝐸 (6) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
                       𝐸𝐸𝐸𝐸 (7) 

where TP, FN and FP stand for true positive, false 
negative and false positive, respectively. Table V shows 
the performance metrics of each TH variable in the test 
data for various time intervals and DNN models 
 
Table V. Performance metrics of peak detection of TH 

variable: TPR (top) and Precision (bottom) 
Time 

interval 30 minutes 15 minutes 10 minutes 

DNN model Surrogate 
model SRCNN Surrogate 

model SRCNN Surrogate 
model SRCNN 

PPS 0.504 0.539 0.517 0.411 0.559 0.413 
Hot leg T 0.642 0.610 0.647 0.605 0.639 0.579 
Cold leg T 0.642 0.658 0.641 0.588 0.610 0.451 
RV WL 0.538 0.534 0.490 0.495 0.445 0.178 
SG P 0.383 0.807 0.151 0.541 0.461 0.539 
SG WL 0.183 0.176 0.548 0.152 0.559 0.142 
Max CET 0.494 0.474 0.442 0.401 0.438 0.374 
CTMT P 0.923 0.830 0.930 0.463 0.929 0.517 
PZR P 0.506 0.546 0.338 0.235 0.332 0.371 
PZR WL 0.615 0.647 0.656 0.638 0.668 0.648 

 
Time 

interval 30 minutes 15 minutes 10 minutes 

DNN model Surrogate 
model SRCNN Surrogate 

model SRCNN Surrogate 
model SRCNN 

PPS 0.933 0.740 0.907 0.481 0.761 0.441 
Hot leg T 0.843 0.801 0.688 0.538 0.741 0.553 
Cold leg T 0.943 0.779 0.868 0.696 0.811 0.422 

RV WL 0.367 0.726 0.286 0.306 0.356 0.139 
SG P 0.509 0.955 0.207 0.596 0.596 0.554 
SG WL 0.205 0.197 0.623 0.148 0.660 0.127 
Max CET 0.437 0.380 0.399 0.315 0.421 0.390 
CTMT P 0.871 0.875 0.867 0.470 0.854 0.496 
PZR P 0.964 0.723 0.604 0.236 0.544 0.391 
PZR WL 0.920 0.934 0.892 0.826 0.869 0.837 

 
4. Conclusions and Further Works 

 
In this study a methodology is developed to improve 

the temporal resolution of accelerated predictions for 
severe nuclear power plant accidents using an SRCNN 
model. By comparing the performance of the SRCNN 
model with a surrogate model across different time 
intervals, while SRCNN offers competitive performance 
in certain scenarios, the surrogate model generally 
outperformed SRCNN, particularly in terms of 
accurately capturing critical peak. 

Since the SRCNN model predicts by smoothing the 
data, it is characterized by a sharp decrease in DTW and 
peak preservation metrics for TH variables that are 
highly oscillatory, such as SG WL, as the time interval 
of the predicted time series decreases. In the case of peak 
preservation, there were thermodynamic variables for 
which the performance metrics increased. However, in 
general, the performance metrics was lower than the 
surrogate model when the upscaling was larger, such as 
10 minutes. These findings suggest that while SRCNN 
has potential as a method for enhancing data resolution, 
further optimization is necessary for it to be fully 
effective in real-time, high-stakes applications such as 
nuclear power plant accident management. 
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