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1. Introduction 

 
Nuclear power plants (NPPs) are a significant source 

of stable electricity generation, and thus ensuring the 
safety of these facilities is important. Ensuring safety is 
particularly important in emergency and severe accident 
situations, where the likelihood of radioactive material 
release increases.  Such situations can expose sensors 
within the NPPs to extreme conditions, including 
radiation, high temperatures, and high pressures. When 
sensors are exposed to these conditions, sensor 
performance can be compromised, resulting in reduced 
reliability. Therefore, it is essential to implement 
procedures for signal verification and restoration to 
ensure the reliability of sensors in emergency and severe 
accident situations. 

In this study, the long short-term memory-variational 
autoencoder (LSTM-VAE) is used to detect signal 
failures through signal verification and to restore 
anomalous signals to the original healthy data. The 
restored data are used for the initial event identification, 
where the explainable boosting machine (EBM) is used 
to diagnose the scenario. Following scenario diagnosis, 
a second restoration is performed using scenario-
specific signal restoration models to refine the signal 
restoration. By dividing the signal restoration process 
into two steps, the approach aims to achieve more 
accurate restoration. The data used to train and test 
these models were collected through the compact 
nuclear simulator (CNS). 

 The objective of this approach is to effectively detect 
and restore signal failures in NPPs during emergency 
situations, providing accurate data. It is expected to 
improve response capabilities in emergency situations 
and contribute to ensuring the safety of NPPs. 

 
2. Methods 

 
In this study, two models, LSTM-VAE and EBM, 

were used to effectively detect and restore signal 
failures that can occur during emergency situations in 
NPPs. The LSTM-VAE model was used to detect and 
restore signal failures, while the EBM model was used 
to identify the initial events. 
 
2.1 LSTM-VAE 

The LSTM-VAE is a deep-learning model commonly 
used for the reconstruction, generation, and anomaly 

detection of time-series data [1]. The LSTM-VAE 
combines the LSTM method with the VAE method to 
effectively train complex patterns in time-series data. 

The VAE method encodes the input data in latent 
space and then decodes it to reconstruct data similar to 
the original. Meanwhile, the LSTM method captures the 
long-term dependencies in the time-series data, 
preserving the temporal characteristics of the data. The 
LSTM-VAE can detect anomalies based on 
reconstruction errors after learning normal data patterns. 
The data are considered anomalous if the reconstruction 
error exceeds a threshold. The structure of the LSTM-
VAE is shown in Fig. 1. 

 

 
Fig. 1. Structure of the LSTM-VAE. 
 
2.2 EBM 
 

The EBM is an interpretable machine learning model 
that uses boosting algorithms to analyze data patterns 
and make predictions [2]. The EBM is developed to 
maintain the robust performance of traditional boosting 
models while reducing complexity and improving the 
interpretability of the results. 

In the EBM, the contribution of each feature is 
evaluated step by step. After each iteration, residuals are 
calculated, representing the differences between the 
predicted and actual values. These residuals are used to 
refine the model by focusing on the errors made in the 
previous step, allowing the model to gradually improve 
its predictions. This iterative process continues until the 
model reaches final state. The EBM is particularly 
strong in interpreting complex data relationships 
because each feature effect is calculated independently, 
and the model is iteratively adjusted based on the 
residuals. The structure of the EBM is shown in Fig. 2. 
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Fig. 2. The EBM training iterations for feature residuals. 
 

3. Data 
 

The data used in this study are based on emergency 
situation collected through the CNS, a simulator 
designed based on the Westinghouse 993MWe 3-loop 
pressurized water reactor. In this study, two scenarios 
were considered: loss of coolant accidents (LOCA) and 
excess steam demand event (ESDE). The CNS consists 
of a total of 2,222 signals, from which 15 signals were 
selected through scenario analysis. 

 
3.1 Data pre-processing 

The selected signals were normalized to values 
between 0 and 1 using the min-max scaling technique.  
This normalization process adjusts the scale of signals 
with different units and ranges to make the data 
consistent, improving model performance. 
 
3.2 Data configuration 

There are three categories of signal failures observed 
in NPPs: bias, drift, and stuck. The bias refers to the 
addition of a constant value to the original data, 
resulting in a consistent increase or decrease in the data 
values. The drift refers to the original data changing 
over time with a constant slope, resulting in a pattern of 
gradual increase or decrease in the data values. The 
stuck refers to a situation where the data values 
suddenly become fixed at a constant value at a 
particular time and do not change. 

To evaluate the performance of the signal failure 
detection and restoration process, signal failure data 
were generated by injecting signal failures into the 
collected data. The anomalies for all three types were 
injected starting at 500 seconds. Specifically, the bias 
was injected by increasing the original data values by 
20% starting at 500 seconds. The drift was injected by 
adding a linear function with a slope of 1% over time 
starting at 500 seconds. Starting at 500 seconds, the 
stuck was injected by fixing the data value at 0. The 
signal failure datasets were used to evaluate the 
performance of the signal failure detection and 
restoration algorithms. A list of the data used in this 
study is shown in Fig. 3. 

 
Fig. 3. Data distribution summary. 

 
4. Result 

 
The overall procedure of the study is shown in Fig. 4 

and consists of the following steps: data pre-processing, 
signal verification, signal restoration, and initial event 
identification. In particular, the signal restoration 
process is conducted in two stages. In the first 
restoration step, the signals are restored using the 
trained model without distinguishing between scenarios. 
In the second step, the restoration focuses on individual 
scenarios to produce more accurate data. 

 

 
Fig. 4. Schematic of the signal verification and restoration 
algorithm. 
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4.1 Signal verification 
 

In this study, the LSTM-VAE model was used to 
detect signal failures that may occur in emergency 
situations. The LSTM-VAE model was trained on 
normal data, which allowed it to learn the normal 
patterns of the signals. Signal failures are detected based 
on the reconstruction error between the original and 
reconstructed signals. As shown in Fig. 5, the signal is 
classified as an anomaly if the reconstruction error 
exceeds a threshold. In this study, the threshold was set 
using the 3-sigma criterion, which reflects a 99.7% 
confidence interval. As a result, the signal failure 
detection achieved an accuracy of 95.2%. 

 

 
Fig. 5. Detection of signal failure (i.e., drift) through 
reconstruction error. 
 
4.2 Signal restoration Ⅰ: Standard model 
 

The data identified as failures by the signal failure 
detection process were subjected to the initial stage of 
reconstruction using the LSTM-VAE model. The 
LSTM-VAE model reconstructs the input data to 
approximate the original signal. The reconstructed 
signal is shown in Fig. 6, where the blue line represents 
the normal data with no signal failures, the red line 
represents the signal failure data, and the green line 
represents the data reconstructed by the LSTM-VAE 
model. 

 

 
(a) LOCA scenario data. 

 
(b) ESDE scenario data. 

Fig. 6. Example of signal restoration Ⅰ results. 
 

4.3 Initial event identification 
 
Following the initial signal reconstruction, the 

reconstructed data were input into the EBM model to 
identify the initial events. The EBM model was used to 
distinguish between the LOCA and ESDE scenarios. 
This process identified the emergency scenario based on 
the reconstructed data following the detection of signal 
failures. The results of scenario identification are shown 
in Fig. 7. 

 

 
Fig. 7. Confusion Matrix for initial event identification result. 

 
4.4 Signal restoration Ⅱ: Scenario-specific models 

 
Following the initial scenario identification, a second 

signal reconstruction was performed using 
reconstruction models that were specific to each 
scenario. These scenario-specific models were designed 
to improve the ability to capture the characteristics of 
each scenario, compared to the initial reconstruction 
model. This approach allowed for a more accurate 
reconstruction of signal characteristics. The results of 
the second reconstruction are shown in Fig. 8. As shown 
in Table I, the mean squared error (MSE) decreased 
compared to the initial reconstruction. The initial signal 
reconstruction was performed using a general 
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reconstruction model, while the subsequent 
reconstruction models were adapted to each specific 
scenario. 

This approach provides a more accurate reflection of 
the signal characteristics, allowing a reconstruction that 
is close to the original signal. The reduction of the MSE 
in the secondary reconstruction indicates that the 
reconstruction model considering the characteristics of 
each scenario is more effective in signal reconstruction. 
Additionally, this approach provides more precise data 
for accurate identification and response to emergency 
situations. Therefore, a secondary signal reconstruction 
performed after scenario identification can provide 
more precise data. This restoration process is important 
for providing precise data during emergency situations 
in NPPs. 

 

 
(a) LOCA scenario data. 

 
(b) ESDE scenario data. 

Fig. 8. Example of signal restoration Ⅱ results. 
 

Table I: Comparison of the MSE results for signal 
restoration Ⅰ and Ⅱ in the types of signal failure 

Scenario 
Signal 
failure 
type 

MSE 
Signal 

restoration Ⅰ 
Signal 

restoration Ⅱ 

LOCA 
Bias 0.0648 0.0603 
Drift 0.1038 0.0856 
Stuck 0.4204 0.1114 

ESDE 
Bias 0.2611 0.0376 
Drift 0.3253 0.0905 
Stuck 0.3898 0.1081 

 
4. Conclusion 

 

In this study, an algorithm for signal verification, 
restoration, and initial event identification was 
developed that can be used in the NPPs emergency 
situations. The LSTM-VAE was used for signal 
verification and restoration, while the EBM was used to 
implement initial event identification. The algorithm 
was trained and tested using data collected from the 
CNS, and signal failure data were generated by 
artificially injecting signal failures for testing purposes. 

The experimental results showed that the signal 
verification process detected signal failures with an 
accuracy of 95.2%. The initial scenario identification 
achieved 90% performance after signal restoration using 
the standard model. In addition, the scenario-specific 
restoration model provided even more accurate signal 
restoration. Differences between the two restoration 
processes were observed, confirming that scenario-
specific restoration provided more precise data. This 
suggests that scenario-specific restoration model can 
better capture the detailed characteristics of the signals.  

In conclusion, the proposed algorithm can contribute 
to decision making in emergency situations. In 
particular, the scenario-specific restoration following 
scenario identification is expected to improve response 
capabilities by providing more precise data. However, 
the results of this studies indicate that further 
performance improvements are needed. Future study 
should focus on optimizing the hyperparameters to 
develop the more robust model and exploring 
specialized restoration models for different types of 
signal failures, as well as models capable of handling 
complex signal failures. 
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