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1. Introduction 

 
This study was conducted to deeply analyze the 

Multiple Steam Generator Tube Rupture (MSGTR) 

accident in the APR1400 reactor. To achieve this, a 

thermal hydraulic simulation model was created using 

the Best Estimate Plus Uncertainty (BEPU) method, 

followed by the development of a machine learning 

(ML) meta-model capable of forecasting the nuclear 

power plant's response during an accident scenario. 

 Following the Fukushima Nuclear Power Plant 

accidents in 2011, there has been a heightened interest 

in ensuring the safety of NPPs under extreme events that 

exceed the Design Basis Accidents (DBA). 

Consequently, the concept of Design Extension 

Conditions (DEC) was introduced to investigate the 

plant's ability to withstand multiple failures and severe 

accidents, as well as to develop potential mitigation 

strategies DEC accident scenarios include MSGTR, 

where more than one tube ruptures simultaneously in a 

single steam generator (SG). Similar to a single SGTR, 

contaminated reactor coolant leaks into the secondary 

side. Due to the break flow, the SG becomes pressurized, 

potentially leading to the opening of the main steam 

safety valve (MSSV) and the release of radioactive 

material into the environment. Compared to the SGTR 

scenario, the break flow in an MSGTR scenario is 

relatively larger. Thus, the accident progresses more 

rapidly, and the potential discharge of radioactive 

material is greater. Initial response and operator actions 

are crucial to mitigate potential consequences and bring 

the plant to safe shut down conditions. In this study, an 

MSGTR scenario involving the rupture of five tubes in 

APR1400 was analyzed, based on work already 

completed by Dzien [1] and Bae [2].  

 

Although the safety analysis for APR1400 in the 

Design Safety Document was conducted using a 

conservative approach, the IAEA recommends the Best 

Estimate Plus Uncertainty (BEPU) approach as a tool 

for a more realistic safety assessment. This method 

enables the determination of an NPP response that is 

both credible and reliable, taking into account various 

uncertainties that can considerably impact the 

progression of an accident. The outcomes of the BEPU 

analysis result in a more substantial safety margin, 

thereby allowing for a more flexible and cost-effective 

operational framework for the NPP. This particular 

methodology has been effectively employed for the 

purpose of reactor licensing, in addition to numerous 

scientific studies. These include the DEC analysis, 

which has been utilized in countries such as France and 

China. For these reasons, the BEPU approach was 

applied in this work to analyze the MSGTR accident 

scenario, mitigation strategy, and evaluation of operator 

action.  

 

In recent years, there has been a surge of interest in 

Artificial Intelligence (AI). One of its promising 

applications lies in predicting accidents in NPPs. 

Additionally, the concept of virtual twins is gaining 

traction, offering virtual replicas of physical assets or 

systems that can simulate real-world scenarios for 

testing, optimization, and predictive maintenance. These 

advancements underscore AI's potential not only in risk 

mitigation but also in revolutionizing how we simulate 

and manage complex systems, thereby assisting 

operators in making informed decisions critical to 

operational safety and efficiency. The completed project 

represents a step towards integrating AI into safety 

analysis and ensuring the secure operation of NPP.  

 

2. Methodology 

 

The workflow for the model development was 

divided into several stages. First, the MSGTR accident 

was simulated in the APR1400 model using the MARS 

best-estimate thermal hydraulic system code. Next, an 

uncertainty quantification analysis was conducted. To 

achieve this, the statistical software DAKOTA was 

coupled with the MARS code. This procedure was 

necessary to evaluate key uncertainties related to the 

MSGTR accident, derive results that satisfy the USNRC 

95/95 rule using Wilks’ equations, and generate a 

database for ML model development. In the final step of 

the project, three ML models capable of predicting the 

APR1400 response to an MSGTR scenario were built 

and trained. 

 

2.1 MSGTR accident simulation 

 

To simulate the accident, a thermal hydraulic model 

of the APR1400 developed using the MARS-KS code 

was employed. Nodalization of the reactor is shown in 

Figure 1. The accident was simulated by assuming that 

the rupture occurs at 0 seconds, with five U-tubes 
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instantaneously rupturing on the hot-leg side of the SG. 

The rupture was modeled as a double-ended guillotine 

break. In contrast to the single tube rupture, the 

simultaneous five-tube rupture was modelled by 

increasing the rupture area by a factor of five. The 

location of the break on the hot leg side has been shown 

to potentially result in the shortest MSSV opening time 

and the largest discharge flow [3]. The rest of the initial 

conditions were set as close as possible to APR1400 

nominal conditions as shown in Table 1 to reflect 

realistic operating conditions, following the BEPU 

methodology. 

 

 Figure 1: MSTGR in APR1400 nodalization 

 
Table 1: Simulation Initial Conditions 

Parameter Unit Value 

Core Power Level MWt 3983.00 

Hot-leg Temperature K 595.07 

Cold-leg Temperature K 562.63 

PRZ Pressure kg/cm2 157.36 

PRZ Water Level % 57.4 

Core Mass Flow Rate 106kg/hr 76.7 

SG Pressure kg/cm2 68.87 

 
Given the rapid development of an MSGTR accident, 

prompt and appropriate operator actions are crucial for 

event mitigation and ensuring the safety of the plant. A 

key time for each required operator action has been 

derived and evaluated by Bae [3]. Accordingly, based 

on Young's timeline, the first operator action was 

modeled to be implemented 10 minutes after the reactor 

trip as a manual trip of the RCP. After another 5 

minutes, a temporary RCS cooldown operation should 

be performed by manual operation of the Main Steam 

Isolation Bypass Valve (MSIBV) and Steam Blowdown 

Control System (SBCS) to discharge steam from the 

affected SG to the condenser. The sequence and timing 

of these modeled operator actions, along with all other 

necessary actions and their respective times, are 

systematically outlined in Table 2. 

 

Table 2: Operator Actions Timeline 

Timeline  Operator Action  

0.0s  

MSGTR initation 
- 

Reactor trip   - 

Rx trip + 10min  OA#1 Manual trip of 4 RCPs  

Rx trip + 15min  
OA#2 Temporary RCS cooldown by 

manually opening MSIBVs and TBV.  

OA#2 + 2min 
OA#3 Pressurizer Auxiliary Spray 

operation  

OA#3 + 2min 
OA#4 Manual closing of MSIBVs and 

TBV  

OA#4 + 2min OA#5 SGBD operation (200s) 

OA#5 + 2min 
OA#6 Manual opening of ADV in 

unaffected SG  

OA#6 + 1hr OA#7 Restarting one RCP per loop  

   

 

2.2 Uncertanity Quantification Framework 

 

For uncertainty quantification, the thermal hydraulic 

input decks for MARS-KS were coupled with 

DAKOTA software using Python scripts to manage data 

transfer. The Phenomena Identification and Ranking 

Table (PIRT) was developed based on studies by 

Westinghouse [4] and Ahn [5] for SGTR accidents, with 

Youn [6] focusing on the MSGTR scenario for 

APR1400 reactors. As shown in Table 3, for MSGTR 

12 most important phenomena were selected, along with 

13 normally uncertain parameters and 19 uniformly 

uncertain parameters, each with specified ranges. 

 

Table 3: PIRT for MSGTR scenario  

Phenomena Parameter PDF μ σ 
min

–max 

Decay heat 

fuel up 

Reactor 

power 
Normal 1 0.008 

0.98-

1.02 

Subchannel 

area 
Normal 1 0.025 

0.95–

1.05 

Gap 

conductance 
Normal 1 0.18 

0.64-

1.36 

Fuel thermal 

conductivity 
Normal 1 0.05 

0.90-

1.10 

Fuel heat 

capacity 
Normal 1 0.01 

0.98-

1.02 

Fuel pallet 

diameter 
Normal 1 0.04 

0.092-

1.08 

Cladding 

thermal 

conductivity 

Normal 1 0.05 
0.998-

1.006 

Decay heat Uniform 1  
0.90-

1.10 

Mixture 

vessel 

Initial PZR 

pressure 
Uniform 1  

0.94-

1.026 
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pressure 

heating 
Initial PZR 

inventory 
Uniform 1  

0.59-

1.449 

Inlet 

temperature 
Uniform 1  

0.97-

1.003 

Saturation 

condition in 

HL 

Multiplier for 

liquid Dittus-

Boetler 

correlation 

Uniform 1  
0.85-

1.15 

 

Multiplier for 

Chen nucleate 

boiling model 

Uniform 1  0.8–1.2 

 

Multiplier for 

vapor Dittus-

Boetler 

correlation 

Uniform 1  0.8–1.2 

Initial total 

mass flow 
Uniform 1  

0.95–

1.05 

RCPs 

moment of 

intertia 

Normal 1 0.1 0.8-1.2 

SIP 

 

Safety 

injection 

delay time 

Uniform 1  
0.85-

1.125 

IRWST 

temperature 
Uniform 1  

0.96-

1.064 

Break flow 

Brek area Uniform 1  
0.95-

1.05 

Break 

discharge 

coefficient 

Uniform 1  
0.60-

1.40 

 

Collapsed 

water level, 

flashing 

fraction 

 

Initial 

secondary-

side pressure 

Uniform 1  
0.974-

1.026 

Initial SG 

inventory 
Uniform 1  

0.55–

1.474 

Interphase 

heat transfer 

coefficient 

Uniform 1  0.9–1.1 

Condenser 

steam flow 

rate 

 

Outlet 

pressure 
Normal 1  

0.974–

1.026 

MSIV steam 

flow rate 

MSIS 

setpoint 
Uniform 1 0.09 0.9–1.1 

 

MSIBV 

steam flow 

rate 

Steam flow 

rate 
Uniform 1 0.09 0.9–1.1 

 

ADV steam 

flow rate 

Outlet 

pressure 
Normal 1 0.09 0.9–1.1 

 

Auxiliary 

spray flow 

rate 

Flow rate Uniform 1 0.09 0.9–1.1 

      

Auxiliary 

feedwater 
Flow rate Uniform 1  

0.77-

1.23 

The number of iterations was determined using Wilk's 

k-order formula. Choosing Wilks' method for this study 

was driven by its simplicity, accuracy, and acceptance in 

regulatory contexts. According to Wilks' one-sided 5th 

order formula, 181 samples are adequate to meet the 

tolerance limit specified by the USNRC 95/95 rule. The 

results of each iteration were then stored in a MySQL 

database due to the large amount of data that would not 

fit into standard CSV files. Using the same method, a 

database consisting of 800 samples was generated, 

which served as training data for machine learning 

models. 

 

2.3 Machine Learning models development 

 

To address the problem outlined in the Introduction 

section, GRU, LSTM, and CNN-LSTM models have 

been developed to predict the plant response during an 

MSGTR scenario. The models were adapted for 

forecasting a single key thermohydraulic parameter 

based on 24 other parameters during the progression of 

the accident.  

The foundation for training ML models is the 

database, which enables models to learn and memorize 

dependencies. Since it's impossible to replicate nuclear 

power plant accidents in real life, simulation data has 

been utilized for this purpose. The aim of the ML 

models was to predict RCS temperature, RCS pressure, 

and RVUH void based on other parameters during an 

MSGTR accident. The parameters for the database were 

selected using Spearman's correlation coefficients with 

the three mentioned parameters. Next, for all three 

targets, common parameters were selected where the 

absolute value of correlation was greater than 0.25. In 

this way, a universal list of 24 parameters was obtained. 

Then, following the methodology described previous 

section, an 800-sample database containing 11 200 800 

lines and 25 columns was generated (time was 25th 

parameter). Based on trial and error methods, 

hyperparameters were adjusted to achieve optimal 

accuracy and efficiency of the model. The lengthy 

duration of each simulation iteration (14000 seconds) 

resulted in a large database that posed computational 

challenges during processing and training. Following 

training, the models were evaluated using various 

performance metrics including Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square 

Error (RMSE), coefficient of determination (R²), and 

prediction accuracy. 

 

 

 

 

 

 

 

 

 

Table 4: Hyperparamters of ML models  



Transactions of the Korean Nuclear Society Autumn Meeting 

Changwon, Korea, October 24-25, 2024 

 

 

Hyperparametres GRU LSTM CNN+LSTM 

Optimizer Adam Adam Adam 

Epoch 10 10 10 

Batch size 700 700 700 

Activation 

function 
relu relu relu 

Hidden layers 1 1 2 

Kernel regularizes 1 1 1 

Training sample 8316584 8316584 8316584 

Testing sample 2072138 2072138 2072138 

 

Additionally, it was a trail to employ Explainable 

Artificial Intelligence (XAI) techniques, namely SHAP 

and LRP to address the "black box" nature of AI and 

enhance the trust in meta-model predictions for 

applications relevant to the nuclear safety industry 

 

3. Results 

 

3.1 MSGTR accident simulation using BEPU method  

 

Figures 2-4 illustrate the NPP system response under 

MSGTR accident conditions, considering various 

uncertainty sources described in the PIRT, as shown in 

Table 2. The analysis focused on key safety parameters, 

including RCS pressure, RCS temperature, and RVUH 

void fraction. Among all simulated iterations, only in 

four instances did the plant not reach the SCS entry 

condition within the initial 14,000 seconds. The RVHU 

void fraction was reduced in all cases. In Figure 2, we 

can observe a group of simulations where the pressure 

initially drops only slightly, then returns to nearly the 

same level as the initial value after approximately 1000 

seconds. This group of simulations starts with a 

relatively low water level in the pressurizer and a high 

water level in the affected steam SG, which are 

conservative initial conditions for the case. This 

combination of parameters caused a reactor trip, 

isolation of the affected SG due to the high water level, 

and activation of the SIP due to the low water level in 

the pressurizer after approximately 60 seconds, almost 

simultaneously. The early isolation of the affected SG 

also led to a decline in heat removal and an 

accumulation of heat, which is evident in Figure 3. 

Simultaneously, high pressure in the affected SG caused 

the opening of the MSSVs. However, the pressure was 

only successfully reduced after the operator opened the 

MSBVs and the TBV. Another group of curves 

represents medium drop in RCS pressure within the first 

1000 second. Initial conditions for those simulations 

included an average water level in the pressurizer and a 

high water level in the affected SG. The noticeable drop 

(smaller than in the nominal case) is caused by the early 

MSIS and isolation of the affected SG. Although, the 

initial RCP pressure was higher than in the previous 

group of curves, allowing the primary side to handle the 

cooling restriction more steadily. For this group of cases, 

the MSSVs were also opened. The irregular shapes of 

the RCS pressure and RCS temperature plots indicate 

different sequences of events during the simulations, 

highlighting the need for further UQ analysis. 

Additionally, each individual case where the plant did 

not reach the SCS entry conditions within the initial 

14,000 seconds should be considered separately. The 

opening of the MSSVs also warrants attention due to the 

potential for radioactive release, necessitating 

radiological analysis. Despite the various sequences of 

events, operator actions successfully mitigated the 

accident in a timely manner in most cases, and the SCS 

entry conditions were met. 

 

 

 Figure 2: MSTGR  results for RCS Pressure vs Time 

 

 
Figure 3: MSTGR  results for RCS Temperature vs 

Time 
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Figure 4: MSTGR  results for RVHU void fraction  vs 

Time 

 

3.1 Machine Learning prediction results  

 

The collected results of the fitted and evaluated models 

are summarized in Table 5. All models demonstrated 

excellent predictive capabilities, consistently achieving 

accuracy over 97%. Changing the forecasting parameter 

did not affect the model's learning capabilities; it 

remained flexible and adapted to new conditions. The 

biggest challenge during model training was the long 

fitting time due to operating on a large dataset. Based on 

this criterion, the LSTM model was deemed impractical 

because its time step was the longest, reaching up to 

70.7 ms/step. Training this model took over an hour. In 

most cases, the fastest learning model was LSTM-CNN, 

which is why it was considered the best and most 

practical. As depicted in Figures 5-7, the forecasting 

capability of parameters by the models was excellent. 

The only deviations observed were in the LSTM 

model's prediction of RCS Pressure. Additionally, it was 

noted that during the training of models, slightly 

different values of training time and accuracy were 

obtained multiple times.  

 

Table 4: Models Performance Results 
Parametr Model Accuracy (%) Step Time 

(ms/step) 

RCS Pressure 

GRU 99.34 21.9 

LSTM 98.29 70.7 

CNN+LSTM 98.77 30.0 

RCS 

Temperature 

GRU 97.36 29.1 

LSTM 97.11 43.7 

CNN+LSTM 98.97 10.8 

RVUH Void 

GRU 97.89 42.5 

LSTM 98.44 72.3 

CNN+LSTM 98.85 25.5 

 

 

 
Figure 5: Predicted and Actual Values of RCS Pressure 

 

 
Figure 6: Predicted and Actual Values of RCS 

Temperature 

 

 
Figure 7: Predicted and Actual Values of RVUH void 

fraction. 

 

 

4. Conclusions 

In the above study, a MSGTR accident scenario in 

the APR-1400 reactor was simulated. The study 

considered operator actions necessary for accident 

mitigation and various sources of uncertainty affecting 

the accident progression. The BEPU methodology 

analysis demonstrated that with specific operator actions 

at critical timelines, the power plant remains safe in 

most of cases. However, due to the varied shapes of 
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plots of plots presenting simulation results with 

uncertainty quantification, suggesting different potential 

sequences of events, further investigation of the 

accident should be pursued. The logic of simulation 

modeling and the PIRT table should be revised again. 

Additionally, in cases where MSSVs have been opened, 

radiological analysis is necessary.  

The results of the study were used to train three ML 

models - GRU, LSTM, and CNN-LSTM. All three 

models were able to accurately predict RCS pressure, 

RCS temperature, and RVUH void fraction as the 

accident progressed. Despite all models achieving 

excellent predictive capabilities, they required a 

significant amount of time for fitting and computational 

power.  Consequently, the LSTM model, with the 

longest training time, was deemed impractical, whereas 

the LSTM-CNN model, with the shortest average 

training time, was considered the best. During multiple 

training sessions, the models achieved varying accuracy 

results ranging from 97% to 99.8%. It is essential to 

classify this uncertainty to enhance the credibility of the 

models by using special build BNN model. To enable 

the use of models in safety analysis, XAI techniques 

should also be applied to demonstrate the prediction-

making process. 
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