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1. Introduction 

 
In the digitalized small modular reactor (SMR) that 

has plans to employ wireless communication, the 

influence of electromagnetic waves for wireless 

communication on nearby built equipment has been 

thoroughly examined from the perspective view of 

SMR safety [1]. Especially, electromagnetic 

interference (EMI) caused by wireless communication 

has obtained the focus on the regulatory side because 

the SMRs will be supported by various digital 

instrumentation and control (I&C) equipment sensitive 

to EMI. Regulatory guidance of KINS/RG-3.09, 

developed for achieving nuclear power plant (NPP) 

safety, requires building the exclusive zone to protect 

safe related digital equipment against EMI as shown in 

(1) [2]. 

 

(1) 30 /t td PG AE=  

 

where d, Pt, Gt, AE indicate the distance configuring 

exclusive zone, the input power, the gain of the 

transmitting (Tx) antenna, and the maximally allowable 

strength of the electric field (132 dBV/m), respectively. 

Therefore, the exclusive zone implies the minimum 

separation distance from an EMI source to protect 

digital I&C equipment against an external electric field 

over 4 V/m  (132 dBμV/m). As the target environment 

is to be larger and more complicated, the limitation 

would be considered more important in making the 

exclusive zone. Here we thus propose a convolutional 

neural network (CNN)-based EM environment 

prediction architecture to overcome the limitation of 

NPPs EM environment analysis [3]. 

 

2. Methods and Results 

 

Figure 1 shows the configuration of the analyzed 

environment consisting of the I&C cabinet (5 m  2 m  

3 m) at the origin in the rectangular room (11.6 m  8.2 

m  3.25 m) with concrete walls (relative permittivity: 

9.8, conductivity: 1.710-5 S/m). In addition, we 

suppose that the transmitting antenna of wireless 

communication can be located at Tx zones 1 and 2 

illustrated in Fig. 1.  
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Fig. 1. Configuration of the analyzed environment. 
 

To estimate electromagnetic field distribution 

efficiently in a variation of the location of the 

transmitting antenna, we employed the machine 

learning (ML) model based on the convolution neural 

network (CNN). Table I shows both input and output 

features as well as types of layers comprising the CNN-

based ML model. As the input of the learning dataset, 

we utilized indoor structure, line of sight space, 

refraction points of placed objects, and Tx antenna 

location made of 280  220 pixels, respectively. We 

also used the path gain distribution (size of 70  55 

pixels), computed by the ray tracing method, at a height 

of 1m in dBm corresponding to the input data. Figure 2 

shows an example of the input data to express the 

indoor structure, the line of sight space, the refraction 

points of placed objects, and the Tx antenna location. 

In the training process of the ML model, the 

performance of the trained ML model dominantly 

depends on the amount of learning dataset reflecting 

various learning cases. However, a small amount of 

learning datasets can be available in our study due to 

limited resources for EM simulation. Thus, we 

employed the k-fold cross-validation to overcome the 

aforementioned limitation and improve the performance 

of the ML model [4].  

 

Table Ⅰ. Machine Learning Configuration 

Input 
CNN-based 

ML composition 
Output 

- Indoor structure 

- line of sight 

- Refraction points 

- TX antenna location 

- 2 Convolution layers 

- 2 poling layers 

Path gain 

distribution 
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(a) Indoor structure (b) Line of sight 

  
(c) Refraction points (d) Antenna location 

Fig.2. Input features for machine learning. 

 

 

We evaluate quantitively the maturity of the trained 

ML model by using the mean square error (MSE) as a 

loss function. After checking the resulting MSE as the 

training process proceeds, we found that the MSE 

converges to zero. This result reveals that the CNN-

based ML model was sufficiently mature for predicting 

the path gain distribution in the target environment.  

Next, we then applied the trained ML model to the 

estimation of the path gain distribution inside the room 

to validate the performance of the trained ML model. 

Figure 3 shows the predicted results derived from the 

trained ML model compared with the EM-simulated 

results computed by the ray tracing method. In 

comparison between Figs. 3 (a) and (b), we confirm that 

the predicted path gain distribution of the proposed 

CNN-based ML model exhibits only the maximum 

difference of 6.7 dBm with that of the EM-simulation. 

Consequently, we conclude that the proposed CNN-

based ML model applied by k-fold cross-validation can 

apply to the estimation of EM distribution in the 

environment of NPPs to enhance nuclear safety. 

 

3. Conclusions 

 

In this paper, we propose an ML-based methodology 

for protecting the digital I&C equipment affected by 

EMI sources caused by wireless communication. To 

overcome the limited availability of the learning dataset, 

we employed k-fold cross validation. After confirming 

that the proposed CNN-based ML model is well-trained, 

we validated the performance of the CNN-based ML 

model by comparing the path gain distribution obtained 

from the lay tracing method of the sample EM 

environment. We consider that the proposed 

methodology to predict path gain distribution can 

contribute to efficiently finding the exclusive zone. 
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(a) Path gain distribution derived from an EM 

simulator. 
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(b) Path gain distribution predicted by trained model. 

 

Fig.3. Estimated and simulated EM analysis results for 

target environment. 
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