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1. Introduction 

 
Artificial neural networks (ANNs) have transformed 

data-driven approaches in many fields, including the 
nuclear industry. ANN models have been applied to tasks 
like equipment diagnostics and early detection of plant 
conditions. However, implementing ANNs for nuclear 
power plant(NPP) simulations is challenging due to the 
vast number of variables involved - over 14,000 in some 
cases. 

This abundance of data provides a comprehensive 
view of plant state but also introduces over redundancy. 
Therefore, feature selection and dimensionality 
reduction are crucial. Identifying key variables can 
improve efficiency and accuracy in condition diagnosis 
while adhering to the principle of model parsimony. 

Reducing variables offers several benefits beyond 
simplification:  

1. It aligns with regulatory requirements for 
verifying AI systems in nuclear facilities.  

2. It enhances cybersecurity by allowing focused 
protection of essential data.  

3. It improves result explainability to operators, 
aiding swift decision-making. 

 4. It boosts operational efficiency by reducing 
computational overhead. 
This study evaluates various feature extraction 

methods for nuclear plant condition diagnosis, including 
explainable AI (XAI) techniques, feature compression 
algorithms, and statistical approaches. The goal is to 
assess how these methods impact ANN performance 
when trained on only the extracted key variables. 

The research takes an  approach by using XAI not just 
to explain model decisions, but as a tool to identify 
important variables from a fully-trained ANN. Methods 
explored include gradient-based selection, layer-wise 
relevance propagation, DeepSHAP, integrated gradients, 
LIME, saliency maps, and DeepLIFT. Feature 
compression techniques like variational autoencoders, 
UMAP [1-8], and PCA are also investigated. 

This approach allows for a comprehensive evaluation 
of different feature selection and compression techniques 
in nuclear plant condition diagnosis. By comparing 
LSTM networks trained on various subsets of variables, 
the study assesses the potential for reducing diagnostic 
system complexity without compromising accuracy or 
reliability. 

The findings aim to provide insights into effective 
variable selection approaches for nuclear plant 
simulations, potentially enhancing the efficiency and 
accuracy of condition diagnosis systems. This could 
contribute significantly to the safety and operational 
effectiveness of nuclear power plants. 

 
2. Experiment 

 
2.1 Dataset Preparation 

 
2.1.1 Target Simulator 
 
To assess the effectiveness of our feature compression 

methods, we employed the IAEA’s integral pressurized 
water reactor (iPWR) simulator, created by Tecnatom in 
2017. The simulator is designed to model and examine 
Small Modular Reactor (SMR) behavior, with a 
particular focus on the iPWR design. The iPWR’s unique 
feature is the incorporation of primary circuit 
components within the reactor pressure vessel, a design 
choice aimed at boosting safety and reliability by 
eliminating the need for external primary circuit piping. 
 

2.1.2 Scenarios (Abnormal/Emergency) 
 

We collected 35 distinct scenarios, including 26 
abnormal situations and 9 emergency events. The 26 
abnormal scenarios were broadly categorized as follows: 

 
1. Feed water system issues: 
 Malfunctions in feed water pumps (#1, #2) 
 Feed water system pipeline rupture 
 Feed water control valve closure 

2. Automatic depressurization system (ADS) 
problems: 

 ADS valves (#1, #2, #3) becoming stuck in an 
open position 

3. Decay heat removal system complications: 
 Decay heat removal inlet valves (#1, #2) 

becoming stuck open 
4. Steam generator irregularities: 
 Steam generator control valves (#1, #2) stuck in 

open or closed positions 
 Steam generator isolation valves (#1, #2) stuck 

open 
5. Main steam system difficulties: 
 Main steam relief valves (#1, #2) stuck open 
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 Main steam isolation valves (#1, #2) stuck open 
 Main steam control valve stuck closed 
 Main steam turbine isolation valve stuck closed 
 Main steam bypass turbine valve stuck open 

6. Vacuum-related issues: 
 Loss of containment vacuum 
 Loss of condenser vacuum 

 
To ensure a thorough analysis, we gathered 30 datasets 

for each abnormal scenario, varying the malfunction 
severity. 

The 9 emergency scenarios were grouped into three 
primary categories: 

 
1. Loss of coolant accident (LOCA): 
 Issues with automatic depressurization system 

(ADS) valves (#1, #2, #3) 
 Reactor core vessel safety valve stuck open 
 Reactor core vessel relief valve stuck open 

2. Steam generator tube rupture (SGTR): 
 Steam header break 
 Steam generator tube (#1, #2) rupture 

3. Main steam line break (MSLB): 
 Rupture in the main steam line 

 
2.2 Experiment Design 
 

Two different neural networks are designed to 
estimate the performance of the feature compression 
methods. Each feature compression methods compress 
features from 116 to 20. Therefore, the first neural 
network for the baseline has 116 input neurons, and the 
other network has 20 input neurons. The detailed designs 
are as follows. 

 
 

 Neural network architecture 
 Structure: LSTM network 
 Input size: 116 (corresponding to the number of 

measurements), 20 (corresponding to the 
compressed features) 

 Output size: 35 (corresponding to the number of 
scenario classes) 

 Number of layers: 4 
 Number of neurons in each hidden layer: 32 
 Loss function: Cross-entropy 
 Optimizer: Adam 

 
Also, experiment procedures can be described as 

follows. 
Let 𝑋 ∈ ℝ×  be the input dataset, where n is the 

number of samples and m = 116 is the number of state 
variables. 

Let 𝑌 ∈ ℝ× be the corresponding labels, where k is 
the number of classes (abnormal and emergency 
situations). 

1. Initial LSTM training: 𝑓ௌ்ெ: 𝑋 → 𝑌 Where 𝑓ௌ்ெ 
represents the LSTM model trained on all 116 
variables. 

2. Feature selection methods: For each XAI method 
𝑀  (i = 1, …, 7 for the different XAI methods): 
𝑆 = 𝑀(𝑓ௌ்ெ, 𝑋) ∈ ℝଶ  Where 𝑆  represents the 
set of 20 most important variables selected by 
method 𝑀.  

3. Feature compression methods: 
 Variational auto encoder: 𝐸ா  : ℝଵଵ → ℝଶ , 

𝐷ா  : ℝଶ  → ℝଵଵ  , 𝑍ா  = 𝐸ா(𝑋)  ∈ 
ℝ(×ଶ) Where 𝐸ா  and 𝐷ா  are the encoder 
and decoder of the VAE, respectively. 

 UMAP: 𝑓ெ  : ℝଵଵ  → ℝଶ  , 𝑍ெ  = 
𝑓ெ(𝑋) ∈ ℝ(×ଶ) 

 PCA: 𝑓  : ℝଵଵ  → ℝଶ  , 𝑍 = 𝑓(𝑋) ∈

ℝ(×ଶ) 
4. Training LSTM models with reduced features: For 

each feature selection or compression method 
𝑗: 𝑋 ∈ ℝ×ଶ  (either selected variables or 
compressed representations) 𝑓ௌ்ெೕ

: 𝑋 → 𝑌 

5. Performance evaluation: For each model 𝑓ௌ்ெೕ
 

and the original 𝑓ௌ்ெ  : 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑(ŷ ==

𝑦)/𝑛 Where ŷ is the predicted label and 𝑦  is the 
true label for sample i.  

 
3. Results and Discussion 

 
3.1 Experiment results 

 
Fig. 1 depicts the overall experimental results, 

showing accuracy trends across 100 epochs for various 
methods. The findings can be categorized into three 
groups: 

 

 

Fig.  1 Accuracy during Epochs 

 
1. High-Performing Models: DeepSHAP, UMAP, 

and Saliency map consistently outperformed other 
methods, achieving peak accuracies above 0.90. Their 
success stems from their ability to capture non-linear 
relationships and model-specific importances. 
DeepSHAP and saliency map benefit from their direct 
link to the model’s decision-making process. UMAP 
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excels in maintaining the data’s topological structure, 
demonstrating remarkable stability across epochs. 
This suggests robust feature representation and 
effective preservation of data relationships. UMAP’s 
exceptionally high initial accuracy and consistent 
performance indicate its proficiency in dimensionality 
reduction while retaining crucial data structure. This 
preservation of essential variable relationships likely 
enables more efficient learning by the neural network, 
allowing it to swiftly achieve and maintain high 
diagnostic accuracy. UMAP’s effectiveness in 
capturing complex, non-linear relationships in a 
lower-dimensional space appears to provide an ideal 
foundation for the diagnostic neural network, 
facilitating quick distinction between various plant 
conditions from the early stages of training. 
 

2. Moderate Performers: Gradient Analysis, 
Integrated Gradient, LRP, DeepLIFT, and LIME 
showed suitable performance but varied in stability. 
Gradient-based methods (Gradient Analysis, 
Integrated Gradient) exhibited sensitivity to the 
model’s current state, leading to instability. LRP and 
DeepLIFT demonstrated more consistent 
performance, likely due to their propagation-based 
approach. LIME’s local approximation strategy 
resulted in moderate but unstable performance. 
 

3. Low Accuracy Models: PCA and VAE 
struggled to match the performance of other methods. 
PCA’s linear nature presents a significant limitation 
in this complex domain. While VAE showed some 
improvement, it may be hindered by the challenges of 
simultaneously optimizing both encoder and decoder 
networks for this specific task. 
 

 
3.2 Frequently Selected Features 
 

Fig. 2 depicts the selected features from the each 
compression methods. 

 

 
 
Certain features consistently emerge across multiple 

methods, highlighting their overall significance: 

1. Feature 69 (Total flow in pressure header): 
Identified by 5 out of 8 methods (LRP, DeepSHAP, 
Integrated Gradient, DeepLIFT, and PCA). 

2. Features 15 (ADS1 valve flow), 16 (ADS2 
valve flow), and 14 (Relief valve flow): Each selected 
by four methods, mainly gradient-based and saliency-
based approaches. 

3. Features 44 (Pump2 speed), 67 (Steam flow rate 
line2), 64 (% open valve turbine), and 71 (Steam 
pressure line2): Each chosen by 3–4 methods across 
various categories. 
The recurring selection of these features indicates their 

vital role in differentiating between normal and abnormal 
plant conditions. 

High-performing methods (DeepSHAP, Saliency Map, 
DeepLIFT) share some commonalities in their feature 
selection: 

1. Features 15, 16, and 17 (ADS1, 2, 3 valve flow): 
Consistently chosen by these methods, suggesting 
their strong relevance to the model’s decision-
making process. 

2. Feature 69 (Steam flow to turbine): Selected by 
both DeepSHAP and DeepLIFT, but not by 
saliency map, indicating its importance in 
propagation-based methods. 

Feature 69 is crucial for distinguishing between 
abnormal and emergency situations, while Features 15, 
16, and 17 are essential in diagnosing automatic 
depressurization system abnormalities and identifying 
LOCAs caused by ADS valve issues. 

In contrast, PCA, which showed suboptimal 
performance, selected unique features (e.g., 84 (Flow 
charge), 98 (Temperature difference hotleg-coldleg)) not 
commonly chosen by other methods. This discrepancy 
might explain PCA’s reduced effectiveness in capturing 
relevant diagnostic information.  

 
 

3.3 Insights 
 
The comprehensive analysis of various feature 

selection methods in nuclear power plant diagnostics 
reveals several key insights. The consistent identification 
of certain features (such as valve openings, safety system 
flows, and key temperature indicators) across multiple 
high-performing methods underscores their critical 
importance in accurately diagnosing plant conditions. 
This consensus provides a strong basis for prioritizing 
these parameters in monitoring systems. 

XAI-based methods, particularly saliency map and 
DeepSHAP, demonstrate superior performance in 
distinguishing between different abnormal situations, 
highlighting the importance of non-linear feature 
interactions in nuclear plant diagnostics. The ability of 
these methods to capture complex relationships among 
variables is crucial for developing more accurate and 
responsive diagnostic systems. 

Dimension reduction, as shown in this study, conducts 
a significant role in nuclear power plant data analytics. 
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Identifying a subset of highly informative features can 
significantly enhance the efficiency and interpretability 
of diagnostic models. This reduction in dimensionality 
offers several key advantages in the nuclear industry: 

1. Cybersecurity Enhancement: Reducing 
monitored variables minimizes potential cyber threat 
attack surfaces, improving overall plant information 
system security. 

2. Improved Human-Machine Interface: A 
reduced set of key variables provides more 
comprehensible and actionable information for human 
operators, potentially leading to faster and more 
accurate decision-making in critical situations. 

3. Computational Efficiency: Focusing on fewer 
crucial variables can lead to more streamlined and 
swifter-executing diagnostic models, enabling real-
time analysis and quicker response to developing 
situations. 

4. Data Management Optimization: Prioritizing 
key variables can guide more efficient data collection, 
storage, and processing strategies, potentially reducing 
infrastructure costs and improving system 
responsiveness. 
However, it’s important to note that these results can 

not guarantee that methodologies like DeepSHAP will 
perform well on all diagnostic datasets. Instead, the 
results demonstrate the potential performance benefits of 
using various XAI or feature compression preprocessing 
modules. These methods can be effective not only for 
extracting useful variables but also for eliminating 
variables deemed unimportant by any methodology. 

The feature selection and compression methodologies 
explored in this study show potential as effective pre-
processing modules for developing robust nuclear power 
plant diagnostic systems. By extracting the most relevant 
variables from the extensive plant parameters, these 
methods can enhance both the accuracy and efficiency of 
artificial intelligence based diagnostic systems. 

 
4. Conclusion 

 
The study analyzes feature selection methods, 

particularly XAI techniques, to improve nuclear power 
plant condition diagnostics. It demonstrates the 
effectiveness of dimension reduction in capturing critical 
information from plant parameters, enhancing efficiency 
and accuracy in detecting abnormal situations. 

The research applies XAI methods for feature 
selection, with saliency map and DeepSHAP showing 
superior performance in identifying key features. UMAP 
emerges as a promising dimensionality reduction method, 
outperforming traditional approaches like PCA. 

Key features identified include valve openings, safety 
system flows, and critical temperature indicators. This 
consensus provides valuable insights for prioritizing 
monitoring efforts in plant operations. 

Feature compression presents numerous advantages, 
including potential enhancements in cybersecurity, 
human-machine interfaces, computational efficiency, 

and data management. The methodologies investigated 
demonstrate significant potential as effective pre-
processing modules for robust diagnostic systems, 
thereby improving both accuracy and efficiency. 

Also, the research highlights the limitations of 
traditional linear methods and underscores the 
importance of non-linear feature interactions in 
developing effective diagnostic tools. 
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