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1. Introduction 

 
As one of a type of Gen IV nuclear reactor, molten salt 

reactors use molten salt like chloride salt or fluoride salt 
as a core coolant. A molten salt reactor has many 
advantages compared to Gen III reactors. A molten salt 
reactor can be kept at the low-pressure condition, so it 
does not require thick pressure vessel to maintain the 
high-pressure condition like Gen III reactors. In addition, 
a molten salt reactor has higher passive safety since a 
molten salt is usually maintained in solid or liquid state 
and does not change its phase to gas during an accident, 
so large leakage of radioactive materials is prevented.  

Despite its great advantages, there are some obstacles 
to be overcome until commercialization of a molten salt 
reactor. One of obstacles is the corrosion risk since 
molten salt is corrosive to structures of a reactor. The 
concentration monitoring of a corrosion products or 
corrosive products are important to analyze the current 
state and minimize the damage from corrosion. However, 
the direct online monitoring is limited as most 
commercial concentration sensors are not applicable to 
molten salt environments. Therefore, several indirect 
monitoring methods are required and suggested [1, 2]. 

As one of indirect monitoring method the 
electrochemical sensor let us know various information 
in a molten salt. To convert the measured data from 
electrochemical sensor into meaningful information it is 
important to extract essential features from measured 
data for machine learning. In this study, the development 
of a feature extractor for machine learning is presented. 
The developed feature extractor could be used to develop 
the machine learning model and the online monitoring 
system for molten salt reactors. 

 
2. Methods and Results 

 
There are several types of electrochemical 

measurement methods. Cyclic voltammetry, 
chronoamperometry and linear sweep voltammetry are 
examples of electrochemical measurement methods. In 
this section, the selected features and the methods to 
extract those features are introduced. The feature 
extractor is developed with Python since Python 
provides easy and meaningful libraries for data 
processing.  

 
2.1 Cyclic Voltammetry Extractor 

 
Cyclic voltammetry is the method that increases and 

decreases voltage in the specific range and observes the 
current trend at the electrode. Berzins-Delahay equation 
shows the relation between a concentration and a peak 
current in voltage-current curve [3, 4].  

 

𝐼𝐼𝑝𝑝 = 0.61𝐴𝐴𝐶𝐶𝑖𝑖�
𝐹𝐹3𝑛𝑛3𝐷𝐷𝑖𝑖𝑣𝑣

𝑅𝑅𝑅𝑅
                   (1) 

 
( 𝐼𝐼𝑝𝑝 : Peak current, 𝐴𝐴 : Electrode surface area, 𝐶𝐶𝑖𝑖 : 

Concentration of the nuclide 𝑖𝑖, 𝐹𝐹: Faraday constant, 𝑛𝑛: 
Number of electrons that participates in reaction, 𝐷𝐷𝑖𝑖 : 
Diffusion coefficient of nuclide 𝑖𝑖, 𝑣𝑣: Voltage scan rate, 
𝑅𝑅: Ideal gas constant, 𝑇𝑇: Temperature)  

 
As it can be inferred from equation 1, the electrode 

surface area, peak current, and some other variables are 
related to the concentration of a nuclide. In addition, the 
previous study suggests that the area of the voltage-
current curve has relation with the concentration of a 
nuclide [5]. Therefore, it is designed to extract the below 
features from cyclic voltammetry data.  

 
1) Peak potential/current (Reduction/Oxidation) 
2) Whole Area 
3) Peak Area (Reduction/Oxidation) 

 
To find a peak potential and current, the data is 

smoothed by averaging data of 5 indices successively.  
The find_peaks function in scipy.signal library is used to 
find peaks. However, the scipy.signal library is usually 
used in signal processing field where the base signal is 
flat and definite peaks exist in the signal. On the contrary, 
the base of voltage-current curve is not flat (the current 
value is different before and after the peak appears). 
Accordingly, the hyperparameters of the find_peaks 
function is adjusted to find the peak optimally.  

Figure 1~4 shows the examples of observed peak 
current, whole area calculating range, peak area 
calculating range, and the capacitive current considered 
peak current, respectively. Peak candidates are expressed 
with translucent green diamond. Among them, finally 
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extracted peaks are expressed with blue squares for 
reduction peaks, and red squares for oxidation peaks.  

Both whole area and half area are calculated with 
trapezoidal method. However, potential points of 
reduction and oxidation do not match each other, so area 
of reduction and oxidation region is calculated separately. 
To calculate half area, the point found by find_peaks 
function with 0.5 of rel_height is used. This way, the half 
position of the peak can be known.  

Lastly, the feature extractor provides the option 
whether to consider capacitive current or not. The 
capacitive current is the base current which is not 
concerned with the reaction that produces peak. The 
capacitive current can be calculated by drawing tangent 
line at the region before the peak occurs (Fig 4). 

 

 

Fig. 1. Observed Peak Current in Voltage-Current Curve 

 

Fig. 2. Whole Area in Voltage-Current Curve  

 

Fig. 3. Peak Area in Voltage-Current Curve 

 

Fig. 4. Considering Capacitive Current in Voltage-Current 

Curve 

 
2.2 Anodic Stripping Analysis (Chronoamperometry & 
Linear Sweep Voltammetry) 
 

Anodic stripping analysis consists of the deposition 
step (Chronoamperometry) and the stripping step (Linear 
Sweep Voltammetry). During the deposition step, the 
deposited charge, initial deposition current and final 
deposition current could have relation with the 
concentration of a nuclide. On the other hand, during the 
stripping step which is also called as linear sweep 
voltammetry is the half of the cyclic voltammetry. The 
voltage is increased from the voltage value applied at 
deposition step to the end voltage value set. Thus, the 
same features which are extracted from the cyclic 
voltammetry are extracted during the stripping step 
(Peak potential/current, Whole area, half peak area). 

 
2.3 Extracted Features and Analysis 

 
The example of extracted data is like figure 5. In 

column B, salts used in experiments are shown. SME is 
the abbreviation for Sodium chloride with Magnesium 
chloride. In column C, nuclides used in experiments are 
shown. In this study, the feature extractor is used for 
experiments which include FeCl2 and CrCl3 or CrCl2. 
Column D shows the temperature of the experiment.  

Column F and G shows the electrode information. As 
two electrodes where one is long and the other is short 
are used, the inserted length of short electrode and the 
length difference between the long and the short 
electrode is shown in column F and G, respectively.  

From the column H, features which are mentioned at 
previous sections are shown. Features from the long 
electrode is expressed with letter “L” and features from 
the short electrode is expressed with letter “S” between 
parentheses. In addition, scan rates or deposition 
potentials are expressed after the electrode long/short 
index. Lastly, the reduction or oxidation is distinguished 
by letter “R” and letter “O” in some columns where both 
reactions need to be distinguished. 
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Fig. 5. Extracted Data File Example 

 
Using these extracted features, correlation coefficients 

are investigated between area ratio and some features, 
and between concentration and some features. Figure 6 
shows the correlation heatmap between area ratio and 
each peak current ratio in various conditions. Figure 7 
shows the correlation heatmap between concentration 
and each peak current flux in various conditions.  

 

 
Fig. 6. Correlation Heatmap between Area Ratio and Peak 

Current Ratios 

 
Fig. 7. Correlation Heatmap between Concentration and Peak 

Current Flux 

 
It could be observed that all peak current ratios show 

correlation coefficients higher than 0.8 with area ratio, 
which is one logistic conclusion. Additionally, reduction 

peak current ratios show higher correlation coefficients 
than oxidation peak current ratios. This may be caused 
by the influence difference of capacitive currents in the 
reduction and oxidation. Reduction peaks are not 
affected by capacitive currents as a extended line of 
capacitive current is almost flat, whereas oxidation peaks 
are affected more than reduction peaks.  

Similarly, the reduction peak current flux showed 
higher correlation coefficients compared to the oxidation 
peak current flux. Furthermore, it is observed that the 
peak current flux from the long electrode has higher 
correlation with the concentration than the short 
electrode, which is another logistic conclusion. As 
logistic conclusions are derived from the correlation 
heatmap between features, it could be concluded that the 
feature extractor extracted peak current features with a 
small error.  

 
3. Conclusions 

 
The feature extractor for a concentration-prediction 

machine learning model is developed in this study. This 
feature extractor can act as a data preprocessor for 
machine learning of a concentration prediction model 
applicable to molten salt environment. Additionally, if 
this feature extractor is connected to the electrochemical 
sensor and trained concentration prediction model, that 
combination can act as a real-time virtual concentration 
sensor. 

The developed feature extractor can extract the 
essential features from several electrochemical 
measurement methods such as cyclic voltammetry, 
chronoamperometry and linear sweep voltammetry. 
From the correlation heatmap between area ratio and 
peak current ratios and between concentration and peak 
current flux, logistic conclusions are well derived. 
Accordingly, it is concluded that the feature extractor 
extracted peak current features with a small error.  

However, features from anodic stripping analysis 
(Chronoamperometry and linear sweep voltammetry) are 
not analyzed primarily in this study since they showed 
poor quality to be used in concentration-prediction 
machine learning model. Therefore, the next step for the 
development of the feature extractor would be finding 
the meaningful features from other electrochemical 
measurement methods except the cyclic voltammetry 
and developing extracting function of those features. In 
addition, it should go through more verification process 
with various experiment data for its versatile application.  
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