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1. Introduction 

 
In the light water reactors, accurate prediction of the 

thermal-hydraulic phenomena accompanying two-phase 

flow is paramount as they dominate the system behavior 

during design basis accidents and design extension 

conditions. Among the various two-phase flow 

phenomena, the critical heat flux (CHF) is recognized as 

one of the most important criteria as it primarily 

determines the fuel rod integrity. However, the complex 

nature of the CHF including its triggering mechanism, 

and limitations of applicable instrumentations are 

contributing to the remarkable uncertainties in the 

models and correlations based on physical assumptions 

and regression features. To resolve the uncertainties of 

the existing CHF models/correlations, new prediction 

approaches applying for the machine learning techniques 

are being suggested because the machine learning 

models have excellent analysis capability figuring out 

the complex patterns between the input and output 

variables based on the nonlinear regression features, i.e., 

bulk weight/bias matrix. A wide range of the machine 

learning architectures have been constructed as an 

augmented prediction tool for the CHF [1-3] successfully 

demonstrating the improved prediction capability 

compared to the existing prediction methods, such as 

look-up table [4] and correlations [5, 6], however, it is 

challenging to use them as an engineering feature 

because quality assurance and regulation methodology 

about the machine learning techniques is still not 

established due to the methodological absence evaluating 

the uncertainty of the machine learning models. 

Therefore, a probabilistic neural network technique, 

which can provide the uncertainty information regarding 

their prediction, can be a potential approach to evaluate 

its predictive capability in both aspects of the developer 

and regulator. In this paper, Bayesian neural network 

based on the variational inference, facilitating the CHF 

prediction and its uncertainty quantification, is proposed 

describing their predictive performance and prospect. 

 

2. Methods 

 

Typically, the neurons in the deep neural network 

(DNN) models consist of the weight and bias in the form 

of certain point values. Because the trained DNN has a 

fixed weight and bias matrix, its prediction uncertainty is 

hard to quantify. Although explainable artificial 

intelligence (XAI) methods and physics-informed 

neutral networks (PINN) [7, 8] are being applied to 

reduce the ‘black-box’ characteristics, reliability of the 

DNN is still being debated due to the difficulty in models’ 

uncertainty quantification. Therefore, probabilistic DNN 

were suggested as an alternative for the conventional 

DNNs. The fundamental concept of the probabilistic 

DNNs is constructing the architecture in a variable 

(distribution) weight and bias matrix, based on the 

variational inference [9].  

 

2.1 Bayesian Neural Network (BNN) 

 

In the system of random variables where X and Z 

represent the observed variable and hidden variable, 

respectively, the conditional probability density p(X|Z), 

referred to as likelihood. From Bayesian theorem, the 

posterior probability density can be computed as: 
 

𝑝(𝑍|𝑋) =
𝑝(𝑋|𝑍)𝑝(𝑍)

𝑝(𝑋)
 (1) 

 

Although the evidence (p(X)) can be computed as 

integration of the likelihood (p(X|z)) and prior (p(z)) for 

an instance z, the integration is not computable in general 

because the hidden variable Z has high dimension. 

Therefore, the posterior is inferred by a variational 

distribution (q*(Z)), which is an arbitrary distribution. 

This variational inference is performed by Kullback-

Leibler (KL) Divergence, which calculates the difference 

between the variational distribution and posterior [10]. 

 

 
Fig. 1. Comparison of (a) conventional DNN and (b) BNN 

[11] 

 

In the BNN, the relationship (posterior) between 

weight/bias and input/output variables is estimated by 

the variational inference based on the KL-Divergence as 

shown in Fig. 1. Because the weight/bias in the BNN is 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 
a form of probabilistic distribution, the model will 

provide the prediction in the form of certain distribution. 

As a result, the uncertainty of the neural network can be 

quantified based on the distribution. Therefore, a BNN 

model is developed in this study for the CHF prediction 

with providing the uncertainty information about the 

prediction. 

 

2.2 Dataset 

 

The CHF database (total 22,532 data) is established by 

collecting the experimental data from open literatures 

including AECL 2006 CHF look-up table [4] to train and 

test the probabilistic DNN models. The input features are 

classified as tube inner diameter (di, 0.002~0.016 m), 

heated length (Lh, 0.05~2 m), system pressure (p, 1~200 

bar), mass flux (G, 10~7900 kg/m2-s), exit quality (xexit, 

-0.5~1.0), and inlet subcooling (ΔTin,sub, 0~150 ℃). As 

shown in Fig. 3, the mass flux, exit quality, inlet 

subcooling, and system pressure exhibit the wide 

distributions as mentioned order.  

 

 
Fig. 2. Number of unique values in the train dataset according 

to individual input features 

 

2.3 Model Description 

 

The BNN is built in the Tensorflow platform and the 

details in the model (architectures and hyperparameters) 

are summarized in Table I. 

Table I: BNN model summary 

Parameters Description or value 

Architecture 6-256-256-256-128-1 

Activation function ReLu 

Data scaling StandardScaler 

Batch size 64 

Optimizer RMSprop 

Learning rate 0.001 

Loss function Mean squared error 

Validation 5-fold cross-validation 

Early stopping 100 epochs in a row 

Number of epochs 1000 

Size of dataset 

Train (Random 80% of 

22,532 samples)  

Test (Random 20% of 22,532 

samples)  

 

The dense variational, which is a module 

implementing the probabilistic weight (weight 

distribution), is applied for the first hidden layer 

consisting of 256 neurons and the rest three layers (256-

256-128) are modeled as conventional dense layer. 

 

3. Results and Discussion 

 

The performance of trained BNN is evaluated with 

root-mean squared error (RMSE) and regression 

coefficient (R2) as Eqs. (2) and (3). The RMSE and R2 

score of the trained BNN model regarding the test dataset 

with 500 iterations are 147.58 kW/m2 and 0.8867, 

respectively. As shown in Fig. 3 (red dots in Fig. 3 denote 

the mean value of the predicted CHF by the trained BNN 

for 500 iterations), the trained BNN shows good 

prediction capability excluding the relatively high CHF 

values (> 6000 kW/m2). 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦exp,𝑖 − 𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑁

𝑖=1
   (2) 

𝑅2 = 1 −
∑ (𝑦exp,𝑖−𝑦𝑝𝑟𝑒𝑑,𝑖)

2𝑛

𝑖=1

∑ (𝑦exp,𝑖−�̅�exp,𝑖)
2𝑛

𝑖=1

    (3) 

 

 
Fig. 3. Histograms for pressure, mass flux, and exit quality 

 

To evaluate the trained BNN performance in figuring 

out the relationship between the individual input features 

and CHF, the mean values and 95% confidence intervals 

of the BNN’s CHF predictions with respect to the 

pressure, mass flux, and exit quality. As shown in Figs. 

4~6, the BNN model successfully provides the 

ensembled prediction (mean) and uncertainty (standard 

deviation) for the input features. It should be noted that 

the predictions are conducted with arbitrary dataset 

(variation of a single input feature and remaining other 

feature values as a constant) due to the high dimension 

of the input dataset. 

The mean value of the 500 predictions by the 

constructed BNN model, depicted as a solid line, 
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increases with mass flux, and decreases with system 

pressure, and exit quality. 
 

 
Fig. 4. Variations of mean and 95% confidence intervals of 

the CHF prediction by the BNN with respect to mass flux 

(constant di=0.004 m, p=100 kPa, and xexit=0.8) 

 

 
Fig. 5. Variations of mean and 95% confidence intervals of 

the CHF prediction by the BNN with respect to exit quality 

(constant di=0.004 m, p=100 kPa, and G=100 kg/m2-s) 

 

 
Fig. 6. Variations of mean and 95% confidence intervals of 

the CHF prediction by the BNN with respect to system 

pressure (constant di=0.004 m, G=100 kg/m2-s and xexit=0.8) 

 

Because this tendency is also generally observable in 

2006 CHF look-up table and analysis of the train dataset, 

it could be concluded that the trained BNN model has a 

physical insight in the CHF prediction according to the 

input features.  

The standard deviation of the CHF prediction by the 

BNN model increases as the mas flux increases as shown 

in Fig. 4. As shown in Fig. 7, which plots the histograms 

for the individual input features of the dataset, the 

number of data exponentially decreases as the mass flux 

increases. Therefore, the increase of prediction 

uncertainty with increasing the mass flux is attributed to 

the lack of dataset. The relationship between the BNN’s 

prediction uncertainty and amount of the dataset could 

also be supported by Fig. 5. The uncertainty decays as 

the exit quality increases from the negative xexit to the 

positive xexit, while the uncertainty increases from xexit = 

0.3 to 1.0. From the comparison between the model 

uncertainty and data histogram, it could be found that the 

amount of data primarily dominates the uncertainty of 

the probabilistic neural network. 

 

 
Fig. 7. Histograms for pressure, mass flux, and exit quality 

 

On the other hand, the uncertainty of the prediction 

increases as the system pressure increases despite the 

dataset distribution with respect to the system pressure is 

relatively uniform compared to other features. The 

characteristics could be caused by two mechanisms; i) 

quantity (frequency) of the multivariable dataset, and ii) 

intensity of outlier in the dataset. The multivariable 

histogram demonstrates the number of data in a function 

of multiple variables. To analyze if the increased 

uncertainty as the increased system pressure results from 

the deficiency of the data in the given mass flux and exit 

quality condition, the 2D histograms consisting of 

pressure-mass flux, and pressure-exit quality are drawn 

as Fig. 8 because the mass flux and exit quality is 

remained as the constant value in Fig. 6. 

As shown in Fig. 8, the amount of data decreases as 

the system pressure increases in the given mass flux and 

exit quality. Whereas the sufficient amount number of 

data exist in the xexit = 0.8 for varied system pressure 

condition, there is insufficient data for the mass flux of 

100 kg/m2-s. In addition, the effect of the outlier in the 

dataset cannot be explored because the number of data is 

unsatisfactory for the pressure in the given mass flux and 

exit quality. Therefore, it is drawn that the increase of the 
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uncertainty as the increase of the system pressure 

attributed to the low frequency of the dataset for the other 

features, especially for the mass flux.  

 

 
Fig. 8. 2D histograms; pressure versus mass flux and exit 

quality 

 

Although the current BNN model exhibits relatively 

noticeable uncertainty in the data-deficient regimes, its 

prediction results are physically explainable and the 

uncertainty could be further reduced by optimizing its 

model architecture and hyperparameters. In addition, 

because the probabilistic neural network model provides 

the reasonable uncertainty information, which facilitates 

the quantitative quality assurance on the NN model, it 

will be preferable as an engineering feature in 

comparison with conventional neural networks having 

the weight/bias matrix in terms of point values. Thus, the 

probabilistic NN models will be a valuable approach in 

the reactor safety assessment by providing the better 

prediction capability and uncertainty band, which helps 

the making decisions of the operators, designers, and 

regulator. 

 

4. Conclusions and Future works 

 

To develop a deep neural network model, enabling the 

accurate prediction of CHF and uncertainty 

quantification of the constructed NN, a probabilistic NN 

(Bayesian NN) based on the variational inference was 

constructed with a total 22,532 dataset. The mean 

predictions of 500 iterations by the trained BNN model 

showed good predictions compared to the train and test 

dataset with a regression coefficient of 0.8867. In 

comparison with the conventional NN models, which 

have the point values of weights and biases, the 

uncertainty could be successfully demonstrated as the 

BNN provides the different values for each iteration. The 

uncertainty of the BNN model was closely related to the 

data distribution according to individual features and 

multivariable dataset. Therefore, further optimization of 

the model architecture, hyperparameter, and data 

augmentation will facilitate the application of the NN 

technique for the reactor safety assessment through the 

quantitative assurance of its performance. 

In the future, the optimization work in aspects of the 

reorganization of the input features, model architecture, 

and combination with other probabilistic techniques, will 

be carried out to improve its performance. In addition, 

the predictive performance of the probabilistic NN 

models will be evaluated quantitatively compared to the 

existing models/correlations and conventional NN. 
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