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1. Introduction 

 
For the safety management of radiation workers in 

nuclear power plants, it is necessary to estimate the 

radiation exposure dose to workers during work 

planning or after an accident. We aimed to develop an 

AI model that can predict the exposure dose similar to 

the results of Monte Carlo simulation for quick and 

accurate dose assessment in the situation of external 

exposure to the human body. Before creating a database 

to train the AI model, we first developed an AI model 

for whole-body doses that can quickly collect results 

with small uncertainties to understand the requirements 

for creating an AI prediction model with adequate 

performance. There was an attempt to apply the DNN 

model to estimate the whole-body dose values by point 

source location [1, 2]. However, it was found that the 

relative errors for points in specific spaces, such as 

nearby human phantoms, were larger than the maximum 

value found on the test data. For a DNN model to be a 

good substitute for Monte Carlo simulation, the 

difference between the simulation computational results 

and the DNN model predictions must be small enough 

in all cases. In this study, we attempted to improve the 

performance of the model by reducing the maximum 

relative error over the entire data domain.  

 

2. Methods and Results 

 

This section describes the process of building a 

DNN-based dose prediction model and how the relative 

error distribution of the entire data changes when the 

model training influencing factors are altered. Based on 

the model structure that performed best in the previous 

study [2], the maximum relative error distributions of 

the predictions changed as the factors for training were 

varied. The factors considered are the data included in 

the training and the loss function.  

 

2.1 Model Building Algorithm  

 

Whole-body dose data for the human phantom by point 

source location were calculated with an uncertainty of 

less than 1% from Monte Carlo simulations using 

GEANT4. The exposed subject was the standing MRCP 

Male Phantom (55.77 cm × 29.13 cm × 176 cm), and 

the radiation type was 1.0 MeV gamma-ray. The 

collected data consisted of about 55,000 grid points 

spaced 5 cm or 10 cm apart within a 2 m × 2 m × 2 m 

space centered at the origin. 10% of the total data was 

randomly sampled as test data and the rest of the data 

was split into training and validation data in an 8:2 ratio. 

The Cartesian and spherical coordinates of radiation 

point sources and whole-body dose values were 

extracted from each output file. Since the dose is 

inversely proportional to the square of the distance from 

the source, the inverse of the square of the distance 

between the point source and the origin was included as 

an input variable. For the selected input variables (x, y, 

z, r, theta, phi, 1/r2) and output variables (whole-body 

absorbed dose), the hyper-parameters of DNN model 

were optimized using Keras-Tuner’s hyperband tuning 

algorithm. The tuning targets were the number of layers, 

the number of nodes in each layer, and learning rate. 

The optimizer was selected as Adam, and the loss 

function was fixed as the mean absolute error (MAE).  

Figures 1 shows a scatter plot of the whole-body dose 

prediction error for each source location in the test data.  

The scatter plot on the left shows all source locations 

in the test data, while the scatter plot on the right shows 

only those cases where the error is greater than 1%.  

 

Fig. 1. Scatter plots showing the whole-body dose prediction 

error of the DNN model by source location in the test data. 

(left : all test data, right : data with an error of 1% or more) 

 

Overall, the dose predictions have less than 1% error 

from the Monte Carlo simulation results, but the 

maximum error can exceed 5%. While this model can 

still be used for dose prediction with some uncertainty 

in certain areas depending on the intended use, 

improvements have been attempted to the model to 
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further reduce the difference with the computational 

simulation results. 

 

2.2 Improving Data Imbalance 

 

When checking the distribution of predicted value 

errors during the model tuning process, the errors 

exceeding 1% were mainly distributed around the 

surface of the phantom and at the corners of the total 

source distribution area. This is presumed to be due to 

two reasons. One is that the pattern of the relationship 

between location and dose changes dramatically when 

located very close to the phantom surface. Figure 2 

shows the relative positions of several points in relation 

to the human phantom. 

 

 
Fig. 2. Illustration of the location of points around the human 

phantom by coordinates 

 

It is observed that points with x-coordinate of -30, y-

coordinate of -15 or z-coordinate of 90 are located very 

close to the human phantom surface. This can lead to a 

sharp increase in the dose gradient with distance. There 

is also a tendency for the edges of the data region to 

have larger errors than elsewhere. Therefore, for this 

model, the decision was made not to consider surface 

contamination. We set a margin space of about 5 cm 

thick from each surface of the human phantom box (red 

line in Figure 2) and excluded sources located within 

that area from the data. Next, it was thought that the 

output variable (whole-body dose) was highly 

unbalanced, resulting in large errors in areas with low 

data frequency. The best approach would be to add data 

in areas where data is relatively sparse, but there are 

limitations on the time and cost of generating data. So, it 

is necessary to find a way to develop a model that 

performs acceptably with as little data as possible. To 

mitigate the data imbalance without adding data, the 

dose values were log-transformed using the equation (1) 

to reduce the absolute value of the skewness of the data 

distribution, as shown in Figure 3. 

 

(1) 1)ylog(10y
n

t   

 

  To account for the scale of the dose values, n was set 

to 18. To increase the range of the distribution of y 

values, yt was multiplied to 10,000 to increase the range 

of the distribution of target values, as small differences 

can change significantly when the predicted values 

outputted by the log-transformed values are converted 

to doses. 

 

 

Fig. 3. Distribution of whole-body doses before and after log 

transformation (top : original data, bottom : log-transformed 

data) 

 

As a result, the trained model produced predictions 

with relative errors within 5% for all data, including test 

data not included in training and train/validation data 

included in training. 

 

2.3 Replacement of the Loss Function 

 

The loss functions for regression models provided by 

Keras include mean squared error (MSE), mean 

absolute error (MAE), mean absolute percentage error 

(MAPE), mean squared logarithmic error (MSLE), 

cosine similarity, Huber, and logcosh[3]. Different types 

of loss functions can have different learning directions, 

such as reducing the impact of outliers or penalizing 

over- and underestimates differently. Since the data 

used in this study was obtained through simulation, 

there are no outliers, so the goal is to create a model that 

can reflect all of the data well. Therefore, we replaced 

the loss function with MSE, which reflects the influence 

of data with large errors to a greater extent. As a result, 

the dose prediction model has the smallest maximum 

relative error for all the data so far. Figure 4 shows the 

relative error of the predictions of the final selected 

model for all data. It is verified that the DNN model can 

be used to predict the dose with a relative error within 

about 3% for all considered source positions. 

 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 

 

Fig. 4. Scatter plots showing the whole-body dose prediction 

error of the DNN model by source location in the full data. 

(DNN model was trained with log-transformed output 

variables) 

 

2.4 Validation of Dose Estimation in External Exposure 

Scenarios Using the DNN Model  

 

To validate that the DNN model can be applied to 

predict whole body dose in scenarios of exposure to 

various types of radiation sources, dose estimation was 

performed for a planar radiation source at various 

locations. Using the GEANT4 code, the results 

calculated with nps 108 were assumed to be the real 

value and compared with the predicted dose from the 

DNN model. In the base scenario, the radiation source 

was defined as a planar source with a 10×10 cm square 

shape. Within the radiation source area, 1,000 locations 

were selected on a regularly spaced grid, and the final 

dose value was calculated by averaging the output of the 

DNN model for the selected locations. The DNN 

model's predicted dose and GEANT4 calculation results 

are shown in Table I. In all cases considered, the DNN 

model predictions agree with the GEANT4 calculations 

within 3%. 

 

Table I: Dose prediction results from DNN model for 

planar source exposure scenario 

Plane 
Center 

location 

GEANT4 

calculation 

[Gy] 

DNN 

model 

prediction

[Gy] 

Relat

ive 

error 

yz plane 

parallel 

(-40,0,0) 1.16E-16 1.14E-16 -2% 

(-50,0,0) 7.71E-17 7.65E-17 -1% 

(40,0,0)  1.07E-16 1.06E-16 -1% 

(50,0,0)  7.27E-17 7.24E-17 0% 

xz plane 

parallel 

(0,-20,0) 2.25E-16 2.22E-16 -1% 

(0,-30,0) 1.48E-16 1.47E-16 -1% 

(0,-40,0) 1.05E-16 1.05E-16 0% 

(0,-50,0)  7.85E-17 7.81E-17 -1% 

(0,20,0) 3.20E-16 3.18E-16 -1% 

(0,30,0) 1.93E-16 1.93E-16 0% 

(0,40,0) 1.31E-16 1.30E-16 -1% 

(0,50,0) 9.43E-17 9.42E-17 0% 

xy plane 

parallel 

(0,0,95)  8.21E-17 8.00E-17 -3% 

(0,0,100) 5.27E-17 5.21E-17 -1% 

(0,-40,95) 4.20E-17 4.17E-17 -1% 

(0,-40,100)  3.70E-17 3.67E-17 -1% 

(0,40,95) 4.59E-17  4.58E-17 0% 

(0,40,100)  4.03E-17 4.02E-17 0% 

(0,-40,0) 1.06E-16  1.05E-16 -1% 

(0,40,0)  1.32E-16 1.31E-16 0% 

(0,-40,-85) 3.44E-17 3.42E-17 0% 

(0,40,-85)  4.05E-17 4.05E-17 0% 

 

3. Conclusions 

 

The prediction error of the DNN model developed to 

predict the whole-body dose of a human phantom 

exposed by a point source is mainly high when the point 

source location is close to the phantom surface or far 

from the phantom. This was assumed to be due to the 

unbalanced distribution of the output variable due to the 

gridded data sampling. To resolve the data imbalance, 

new data can be added or the data can be undersampled. 

However, adding new data is time-consuming and costly, 

and it requires deciding how much new data to add each 

time the target variable changes. Undersampling can 

lead to poorer predictive performance because it doesn't 

utilize the information in the data available. In this study, 

the log transformation of the output variable was 

performed to reduce the skewness of the distribution to 

train the DNN model, and MSE, which better reflects 

the impact of large errors, was used as the loss function. 

As a result, the prediction performance of the model 

was found to be better than before. In addition, it was 

verified that the developed model can be used to 

produce similar results to Monte Carlo simulation in the 

exposure scenarios for point source as well as plane 

source. Due to the complex geometry of the human 

phantom, Monte Carlo simulations take several minutes 

to run even on a server with 36 threads, while the DNN 

model can produce results in seconds on a regular 

desktop. It is expected that the developed DNN model 

can be utilized to perform whole body dose calculations 

in heterogeneous source distributions within a short time 

and easily by non-experts. 
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