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1. Introduction 

 
There are various systems in Nuclear Power Plants 

(NPPs) for stable operation. Among these, the role of the 
Instrumentation and Control (I&C) system is crucial in 
NPPs, where safety is a top priority. The I&C system 
automatically provides protection and appropriate 
control to manage risks that may arise in both normal and 
abnormal conditions. Additionally, it is responsible for 
initiating signals for resolution when problems occur.  

Since the 2000s, these I&C systems have transitioned 
from analog to digital devices, driven by the 
obsolescence of analog systems and the benefits of easier 
maintenance, among other advantages. However, unlike 
analog devices, digital devices can breakdown 
instantaneously. In particular, the Reactor Protection 
System (RPS) among digital devices is a crucial system 
for safety. Such a breakdown in the RPS can lead to 
NPPs shutdowns and the possibility of severe accidents. 
According to the Operational Performance Information 
System for NPPs (OPIS) operated by the Korea Institute 
of Nuclear Safety, incidents caused by I&C defects 
accounted for 20.5% of all NPPs incidents from 2011 to 
2023 [1]. Various efforts are being made to prevent such 
defects, including self-diagnosis functions, operational 
periodic tests, and scheduled maintenance. However, 
proving the reliability of self-diagnosis functions is 
challenging. Additionally, periodic tests occur only at 
scheduled times, so assessing their condition during 
normal operation is difficult. Furthermore, the inability 
to predict failures necessitates regularly replacing all 
components. Breakdown maintenance and preventive 
maintenance performed at operating NPPs are 
unconditional maintenance that does not consider the 
actual level of defects or the possibility of failure, 
resulting in unnecessary costs.  

To address these issues, a research is underway to use 
Artificial Intelligence (AI) for prompt condition 
diagnosis and early failure prediction of RPS 
components, enabling proactive measures. In this paper, 
we present a framework for the prompt condition 
diagnosis and failure detection of RPS components. 
Additionally, by utilizing accelerated aging data from 
Insulated Gate Bipolar Transistor (IGBT), we conduct 
preliminary modeling for the condition diagnosis and 
failure detection of RPS components, deriving suitable 
AI methods. 

2. Model 

 
In this study, four AI models were utilized. Deep 

Neural Network (DNN) and Long Short-Term Memory 
(LSTM) were used in supervised learning, while 
Autoencoder (AE) and LSTM-AE were used for 
unsupervised learning.  

 
2.1 Deep Neural Network 

 
DNN is a type of artificial neural network featuring 

multiple layers. Generally, a DNN includes an input 
layer, several hidden layers, and an output layer. Each 
layer contains numerous neurons that extract features 
from input data and forward them to the subsequent layer. 
DNN excels in automatically learning features from data, 
making them widely used in various fields such as image 
recognition, natural language processing, and speech 
recognition. 

 
2.2 Long Short-Term Memory 
 

LSTM is a type of Recurrent Neural Network (RNN) 
designed for sequence data. It was developed to address 
the long-term dependency problem, a drawback of 
existing RNN [2]. Fig. 1 shows the structure of LSTM. 
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Fig. 1. LSTM structure 
 

LSTM consists of an input gate, forget gate, and output 
gate. The input gate decides how much information to be 
added to the cell state. The forget gate determines which 
information to be discarded from the cell state. The 
output gate decides which part of the cell state to pass on 
as the output. This process allows LSTM to store, delete, 
and output the necessary information at each time step, 
maintaining information over long periods. Table I 
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shows the variables of the LSTM model and their 
description. 

 

Table I: LSTM Variables 

Variables Description 

Ct-1 
Cell state from the 
previous time step 

Ct 
Cell state at the current 

time step 

Xt 
Input at the current  

time step 

ht-1 
Output from the previous 

time step 

ht 
Output at the current  

time step 
 

2.3 Autoencoder 
 

AE is an artificial neural network used for efficient 
representation learning of data. It is primarily utilized for 
data dimensionality reduction, feature learning, anomaly 
detection, and generative models [3]. Fig. 2 shows the 
structure of AE. 
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Fig. 2. AE structure 
 

The AE is composed of two main components: the 
encoder and the decoder. The encoder processes input 
data to extract essential features, transforming it into an 
internal representation. The decoder takes this internal 
representation generated by the encoder and reconstructs 
data similar to the original input. The model uses a loss 
function to produce outputs that resemble the original 
data, minimizing the difference between the input and the 
reconstructed output. This allows the AE to capture and 
highlight the most significant features of the data. 
 
2.4 Long Short-Term Memory Autoencoder 

 
The LSTM-AE is a variation of the AE based on 

LSTM networks. This model aims to learn 
representations of sequence data efficiently. Fig. 3 shows 
the structure of LSTM-AE. 
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Fig. 3. LSTM-AE structure 
 

The LSTM-AE features an architecture where both the 
encoder and decoder components are designed as LSTM 
structures. This configuration allows the model to 
harness the strengths of LSTM in handling sequential 
data. The training process of the LSTM-AE aligns with 
the conventional AE approach, focusing on learning 
efficient data representations through reconstruction. 
Due to the inherent properties of LSTM which excels in 
capturing temporal dependencies within data, the LSTM-
AE is particularly well-suited for anomaly detection in 
time-series datasets, offering robust and effective 
identification of irregular patterns over time. 

 
3. Data Preprocessing 

 
In this study, preliminary modeling was performed 

using the accelerated aging data of IGBT provided by 
NASA’s Open Data Portal [4] for condition diagnosis 
and failure detection. These data are from subjecting 
IGBT to thermal overstress aging with square signal gate 
voltage bias. The IGBT failure point is an instant when 
the latch-up phenomenon occurred. Latch-up is a 
phenomenon that excessive current flows due to the 
formation of unnecessary current paths due to strong 
voltage. In this study, we utilized data from four IGBT 
devices (Device 2, Device 3, Device 4, and Device 5). 
Among them, data from Device 2, Device 3, and Device 
4 were used as train data for model training, and data 
from Device 5 was used as test data to evaluate the 
performance of the model. In addition, a part of the 
training data was selected to be used as validation data. 
Data preprocessing was performed to utilize this data to 
train an AI model. Data preprocessing involved variable 
selection and data standardization. Additionally, data 
preprocessing for the LSTM-based model was also 
performed using the sliding window technique. The data 
were divided into two sets based on the number of 
variables. One dataset includes three variables, while the 
other contains seven variables. Table II shows the input 
variables for two data sets. Additionally, data for each 
time steps of 2, 5, 10, and 15 were used using the sliding 
window technique. 
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Table II: Input variables for two data sets 
 

Data set Input variables 

I 
Operating time 
Temperature 

Voltage 

II 

Operating time 
Temperature 

Voltage 
Average temperature 

Average Voltage 
Weighted Average temperature 

Weighted Average Voltage 
 

Finally, the data was divided into specific sections 
based on the Remaining Useful Life (RUL) to train a 
condition diagnosis model. Using data categorized by 
RUL intervals, the condition of the IGBT is diagnosed to 
determine which interval it falls into. Table III shows the 
criteria by which specific data sections were divided. 

 
Table III: Data by specific segments based on RUL 

 

No. RUL 

State I RUL > 1800 
State II  1300 < RUL ≤ 1800  
State III  800 < RUL ≤ 1300 
State IV RUL < 800 

 
 

4. Framework 
 

Fig. 4. shows an overview of the framework for the 
process of condition diagnosis and failure detection.  
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Fig. 4. Framework overview 
 
This framework aims to construct and utilize three 

main models for precise diagnosis of the component 
conditions. The first model is an unsupervised learning 
model based on the entire dataset. Focused on failure 
detection, it identifies normal and abnormal patterns in 
the data, enabling early detection of unusual behaviors or 
potential failure states.  

The second model, a supervised learning model, is 
based on data segmented into specific intervals. It learns 
from data classified according to the RUL of components 
and predicts condition labels for each RUL range. This 

allows for a more detailed understanding of component 
conditions.  

The third model is also based on data from specific 
intervals but is trained using an unsupervised learning 
approach. Unlike the supervised model, it learns the 
structure and patterns of data without explicit labels to 
determine whether data belongs within a specific RUL 
interval, thereby discerning if the component condition 
belongs to the given RUL range. 

Using these three models, we can diagnose component 
conditions more precisely and provide more accurate 
information for failure detection. Particularly, by 
performing dual verification of data from specific 
intervals through supervised and unsupervised learning 
models, we can enhance the predictive reliability of the 
models and develop a tool to support decision-making in 
actual operational environments. 

 
5. Result 

 
This study has developed failure detection and 

condition diagnosis models based on the designed 
framework. The failure detection models, AE and 
LSTM-AE were each constructed using the entire dataset. 
The LSTM-AE model with 15 time steps was designed. 
The output of the failure detection model is the 
reconstruction error value, which measures the 
difference between the learned data and the newly input 
data. By analyzing the differences in data through this 
reconstruction error, the model performs failure 
detection. The performance evaluation of the models was 
conducted using the Area Under the Curve (AUC) value, 
which represents the area under the Receiver Operating 
Characteristic (ROC) curve. The ROC curve is a graph 
that illustrates the True Positive Rate (TPR) against the 
False Positive Rate (FPR) at various threshold levels of 
the model. An AUC value close to 1 indicates the 
superior failure detection capability of the model, while 
a value near 0.5 suggests that the performance is akin to 
random guessing. This metric serves as an important 
measure of how accurately the model identifies actual 
failure conditions. 

Table IV shows the performance comparison results 
and shows the performance of AE and LSTM-AE 
according to the units and variables of the model. The 
LSTM-AE model with 15 time steps, 128 units and 7 
variables exhibits the highest performance with an AUC 
value of 0.9989. 

The condition diagnosis models were designed to 
perform cross verification using both unsupervised and 
supervised learning models. The condition diagnosis 
models, AE and LSTM-AE, were each constructed and 
trained using unsupervised learning. The unsupervised 
learning condition diagnosis model constructs a model 
for each specific data segment to inform which interval 
the current state falls into. Specific-segmented data were 
used as the training data. For performance evaluation, the 
AUC value was used as the evaluation metric. 
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Table V shows the results of the performance 
comparison, illustrating the performance of AE and 
LSTM-AE in specific segments based on variables. The 
LSTM-AE model achieved the best performance, with an 
AUC value of 1 across all stages, regardless of the 
number of variables. 

The condition diagnosis models, DNN and LSTM 
were each constructed and trained using supervised 
learning. The supervised learning-based condition 
diagnosis model uses specifically segmented data, 
labeled for each state, to determine which interval the 
current condition falls into. The LSTM model was 
constructed separately for different time steps to 
compare performance. The metric used for performance 
evaluation was accuracy, which is defined as the ratio of 
cases correctly predicted by the model. Accuracy can be 
represented as Eq. (1). 
 

True Positives + True Negatives

Total number of samples
Accuracy =             (1) 

 
Table VI shows the result of the performance 

comparison. The LSTM model with 15 time steps had 
the best performance, reaching an accuracy value of 1 
across all inputs, regardless of the number of variables. 
 
Table IV: Performance evaluation of failure detection 

model using AUC 
 

Model Units 
AUC 

3 Inputs 7 Inputs 

AE 

16 0.9791 0.9295 
32 0.9723 0.9404 
64 0.9564 0.8105 
128 0.913 0.8724 
256 0.9826 0.7956 
512 0.9675 0.8557 

LSTM-AE 
(15 time steps) 

32 0.9973 0.9962 
64 0.9761 0.9971 

128 0.9981 0.9989 
256 0.9757 0.9844 

 
Table V: Performance evaluation of unsupervised 
learning condition diagnosis model using AUC 

 

Model State 
AUC 

3 Inputs 7 Inputs 

AE 

State I 0.9817 0.9484 
State II  0.9642 0.9579 
State III  0.9503 0.9857 
State IV 0.9707 0.9981 

LSTM-AE 
(15 time steps) 

State I 1.0 1.0 
State II 1.0 1.0 
State III 1.0 1.0 
State IV 1.0 1.0 

 

Table VI: Performance evaluation of supervised 
learning condition diagnosis model using accuracy 

 

Model 
Accuracy 

3 Inputs 7 Inputs 

DNN 0.8312 0.8961 

LSTM 
(2 time steps) 

0.8356 0.8496 

LSTM 
(5 time steps) 

0.8361 0.8525 

LSTM 
(10 time steps) 

0.9268 0.9756 

LSTM 
(15 time steps) 

1.0 1.0 

 
6. Conclusions 

 
In this study, an AI-based framework is proposed for 

condition diagnosis and failure prediction of the RPS 
components, using the accelerated aging data of IGBT 
provided by NASA for initial modeling. This research 
was conducted using four AI models: DNN, LSTM, AE, 
and LSTM-AE. This study aims to accurately diagnose 
the condition of RPS components and predict failures 
early, thereby improving the safety of NPPs. 

Experimental results showed that the LSTM-AE 
model with 128 units, 7 variables, and 15 time steps 
exhibited the best performance among all the fault 
detection models built using the entire dataset, with an 
AUC value of 0.9989. This indicates that the LSTM-AE 
model is capable of accurately capturing the temporal 
continuity of data, and based on this, it can precisely 
detect failure. 

Furthermore, in the case of unsupervised learning 
models for condition diagnosis, the LSTM-AE model 
showed the best performance with an AUC of 1 when 
trained on segment specific data. In the case of 
supervised learning models, the LSTM model using 15 
time steps showed the best performance with an accuracy 
of 1. This suggests that LSTM can effectively handle 
long-term dependencies in data and accurately judge the 
condition of RPS components. 

Through this study, it is expected that the AI-based 
diagnostic and prediction models to be developed in the 
future will accurately assess the condition of RPS 
components in NPPs and detect potential failures early, 
contributing to the safe operation of NPPs. These models 
are also expected to provide advantages such as 
improving the efficiency of regular maintenance work 
and reducing unnecessary replacement costs. 
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