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1. Introduction

In this study, four Al models were utilized. Deep
There are various systems in Nuclear Power PlantsNeural Network (DNN) and Long Short-Term Memory
(NPPs) for stable operation. Among these, theabthe (LSTM) were used in supervised learning, while
Instrumentation and Control (I&C) system is crudral Autoencoder (AE) and LSTM-AE were used for
NPPs, where safety is a top priority. The I&C sgste unsupervised learning.
automatically provides protection and appropriate
control to manage risks that may arise in both rmband 2.1 Deep Neural Network
abnormal conditions. Additionally, it is responsitfbr
initiating signals for resolution when problems wcc DNN is a type of artificial neural network featugin
Since the 2000s, these 1&C systems have transitione multiple layers. Generally, a DNN includes an input
from analog to digital devices, driven by the layer, several hidden layers, and an output lagach
obsolescence of analog systems and the beneétssadr layer contains numerous neurons that extract featur
maintenance, among other advantages. However,eunlik from input data and forward them to the subsediaget.
analog devices, digital devices can breakdown DNN excels in automatically learning features froata,
instantaneously. In particular, the Reactor Praiact making them widely used in various fields suchnaage
System (RPS) among digital devices is a crucialesys  recognition, natural language processing, and $peec
for safety. Such a breakdown in the RPS can lead torecognition.
NPPs shutdowns and the possibility of severe antsde
According to the Operational Performance Informatio 2.2 Long Short-Term Memory
System for NPPs (OPIS) operated by the Korea Urtstit
of Nuclear Safety, incidents caused by 1&C defects LSTM is a type of Recurrent Neural Network (RNN)
accounted for 20.5% of all NPPs incidents from 2@11 designed for sequence data. It was developed tessld
2023 [1]. Various efforts are being made to preserth the long-term dependency problem, a drawback of

defects, including self-diagnosis functions, opersl existing RNN [2]. Fig. 1 shows the structure of INGT
periodic tests, and scheduled maintenance. However,
proving the reliability of self-diagnosis functions h,
challenging. Additionally, periodic tests occur yrat 'ggf; A
scheduled times, so assessing their condition gurin C > X >+ —~
normal operation is difficult. Furthermore, the bilay 1 g g A 1 T
to predict failures necessitates regularly repigcail X Forget
components. Breakdown maintenance and preventive A G tanh
maintenance performed at operating NPPs are g O tanh
unconditional maintenance that does not consider th J\ J\ J\ J
actual level of defects or the possibility of fagy Ny > J >X h,
resulting in unnecessary costs. Output

To address these issues, a research is underwag to X, Gate

Artificial Intelligence (Al) for prompt condition

diagnosis and early failure prediction of RPS Fig. 1. LSTM structure

components, enabling proactive measures. In thpsmpa

we present a framework for the prompt condition LSTM consists of an input gate, forget gate, artgaiu

diagnosis and failure detection of RPS components.gate. The input gate decides how much informatidoet

Additionally, by utilizing accelerated aging daterh added to the cell state. The forget gate deternvirsh

Insulated Gate Bipolar Transistor (IGBT), we cortduc information to be discarded from the cell stateeTh

preliminary modeling for the condition diagnosisdan output gate decides which part of the cell stafeaiss on

failure detection of RPS components, deriving €la  as the output. This process allows LSTM to stoetetd,

Al methods. and output the necessary information at each tiew s
2. Modéd maintaining information over long periods. Table |
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shows the variables of the LSTM model and their

description. The LSTM-AE is a variation of the AE based on
LSTM networks. This model aims to learn
Table I: LSTM Variables representations of sequence data efficiently. F&hows
the structure of LSTM-AE.
Variables Description
Cell state from the
Cia ; ;
previous time ste
Cell state at the current
C .
time ste|
X Input at the current
f .
time Stel - Reconstructed
h Output from the previous sequence sequence
t-1 :
time stey Fig. 3. LSTM-AE structure
he Outpu_t at the current
time stey The LSTM-AE features an architecture where both the
encoder and decoder components are designed as LSTM
2.3 Autoencoder structures. This configuration allows the model to

) - ] harness the strengths of LSTM in handling sequentia

AE is an artificial neural network used for effioste  43t3. The training process of the LSTM-AE alignghwi
representation learning of data. It is primariljized for the conventional AE approach, focusing on learning
data dimensionality reduction, feature learningraaly efficient data representations through reconswucti
detection, and generative models [3]. Fig. 2 shtves  pye 1o the inherent properties of LSTM which exdels
structure of AE. capturing temporal dependencies within data, tHEMLS
AE is particularly well-suited for anomaly detectin
time-series datasets, offering robust and effective
identification of irregular patterns over time.

3. Data Preprocessing

In this study, preliminary modeling was performed
using the accelerated aging data of IGBT provided b
NASA’s Open Data Portal [4] for condition diagnosis
and failure detection. These data are from sulbjgcti
IGBT to thermal overstress aging with square sigast
voltage bias. The IGBT failure point is an instarten
the latch-up phenomenon occurred. Latch-up is a
phenomenon that excessive current flows due to the
formation of unnecessary current paths due to gtron
voltage. In this study, we utilized data from fd@BT
devices (Device 2, Device 3, Device 4, and Devige 5
Input Reconstructed Among them, data from Device 2, Device 3, and Devic
Data Data 4 were used as train data for model training, aaiz d
from Device 5 was used as test data to evaluate the
performance of the model. In addition, a part of th
training data was selected to be used as validalida.
Data preprocessing was performed to utilize thia da
Yrain an Al model. Data preprocessing involved afale
selection and data standardization. Additionallgtad
preprocessing for the LSTM-based model was also
performed using the sliding window technique. Th&ad
were divided into two sets based on the number of
variables. One dataset includes three variablete wie
other contains seven variables. Table Il showsrthet
variables for two data sets. Additionally, data &ach
time steps of 2, 5, 10, and 15 were used usinglitiiag
window technique.

Fig. 2. AE structure

The AE is composed of two main components: the
encoder and the decoder. The encoder processes inp
data to extract essential features, transforminmgtdt an
internal representation. The decoder takes thernat
representation generated by the encoder and regotsst
data similar to the original input. The model uadsss
function to produce outputs that resemble the oaigi
data, minimizing the difference between the inpat the
reconstructed output. This allows the AE to capand
highlight the most significant features of the data

2.4 Long Short-Term Memory Autoencoder
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Table II: Input variables for two data sets

Data set Input variables

Operating tim
| Temperatur
Voltage
Operating tim
Temperatur
Voltage
Il Average temperatu
Average Voltag
Weighted Average temperat
Weighted Average Volta

Finally, the data was divided into specific section
based on the Remaining Useful Life (RUL) to train a
condition diagnosis model. Using data categorized b
RUL intervals, the condition of the IGBT is diagedsto
determine which interval it falls into. Table Ihews the
criteria by which specific data sections were didd

Table 1lI: Data by specific segments based on RUL

No. RUL
Statel RUL > 180(
State Il 1300 < RUL< 1800
Statelll 800 < RUL< 130(
StatelV RUL < 80(

4. Framework

Fig. 4. shows an overview of the framework for the
process of condition diagnosis and failure detectio

In casetheinput dataisnot
0 within thedistribution of

thetrained dataor in case
of failures

Models trained on all data
(Unsupervised learning)

In case theinput data iswithin
thetrained data distribution

Models trained on segment-specific data

(Unsupervised learning)

!

Output of indusion status for specific RUL ranges

Models trained on segment-specific data
(Supervised learning)

Cross-verification|

Output of labelsfor specific RUL ranges

Fig. 4. Framework overview

This framework aims to construct and utilize three

allows for a more detailed understanding of compbne
conditions.

The third model is also based on data from specific
intervals but is trained using an unsupervisedniear
approach. Unlike the supervised model, it learres th
structure and patterns of data without explicitelahto
determine whether data belongs within a specific.RU
interval, thereby discerning if the component ctindi
belongs to the given RUL range.

Using these three models, we can diagnose component
conditions more precisely and provide more accurate
information for failure detection. Particularly, by
performing dual verification of data from specific
intervals through supervised and unsupervised ilegrn
models, we can enhance the predictive reliabilitthe
models and develop a tool to support decision-nakin
actual operational environments.

5. Result

This study has developed failure detection and
condition diagnosis models based on the designed
framework. The failure detection models, AE and
LSTM-AE were each constructed using the entiresidta
The LSTM-AE model with 15 time steps was designed.
The output of the failure detection model is the
reconstruction error value, which measures the
difference between the learned data and the newplyti
data. By analyzing the differences in data throtigh
reconstruction error, the model performs failure
detection. The performance evaluation of the modaks
conducted using the Area Under the Curve (AUC)&alu
which represents the area under the Receiver Opgrat
Characteristic (ROC) curv&he ROC curve is a graph
that illustrates the True Positive Rate (TPR) agfatine
False Positive Rate (FPR) at various thresholdidevie
the model. An AUC value close to 1 indicates the
superior failure detection capability of the modehile
a value near 0.5 suggests that the performandansa
random guessingThis metric serves as an important
measure of how accurately the model identifies actu
failure conditions.

Table IV shows the performance comparison results
and shows the performance of AE and LSTM-AE
according to the units and variables of the modke
LSTM-AE model with 15 time steps, 128 units and 7
variables exhibits the highest performance wittARIC
value of 0.9989.

The condition diagnosis models were designed to

main models for precise diagnosis of the componentperform cross verification using both unsuperviaed

conditions. The first model is an unsupervisedreeay
model based on the entire dataset. Focused orrdailu
detection, it identifies normal and abnormal patein
the data, enabling early detection of unusual biehger
potential failure states.

supervised learning models. The condition diagnosis
models, AE and LSTM-AE, were each constructed and
trained using unsupervised learning. The unsupsalvis
learning condition diagnosis model constructs a ehod
for each specific data segment to inform whichridé

The second model, a supervised learning model, isthe current state falls into. Specific-segmentetd deere

based on data segmented into specific intervalsaths
from data classified according to the RUL of comgrais
and predicts condition labels for each RUL rand@sT

used as the training data. For performance evalugtie
AUC value was used as the evaluation metric.
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Table V shows the results of the performance
comparison, illustrating the performance of AE and
LSTM-AE in specific segments based on variableg Th
LSTM-AE model achieved the best performance, with a

AUC value of 1 across all stages, regardless of the

number of variables.
The condition diagnosis models, DNN and LSTM

were each constructed and trained using supervised
learning-based condition
diagnosis model uses specifically segmented data

learning. The supervised

labeled for each state, to determine which intethal
current condition falls into. The LSTM model was

constructed separately for different time steps to

compare performance. The metric used for performanc
evaluation was accuracy, which is defined as ttie cd
cases correctly predicted by the model. Accuracylea
represented as Eq. (1).

True Positives + True Negativ
Total number of samples

@)

Accuracy =

Table VI shows the result of the performance
comparison. The LSTM model with 15 time steps had
the best performance, reaching an accuracy valde of
across all inputs, regardless of the number ofées.

Table IV: Performance evaluation of failure deteati
model using AUC

AUC
Model Units
3 Inputs 7 Inputs
1€ 0.979: 0.929¢
32 0.972: 0.940¢
AE 64 0.956¢ 0.810¢
12¢ 0.91: 0.872¢
25€ 0.982¢ 0.795¢
512 0.967¢ 0.855"
32 0.997: 0.996:
LSTM-AE 64 0.976: 0.997:
(15 time steps)| 128 0.9981 0.9989
25€ 0.975 0.984«

Table V: Performance evaluation of unsupervised
learning condition diagnosis model using AUC

Model State AUC
3 Inpuis 7 Inpuis
State | 0.9817 0.948:
AE State Il 0.964: 0.957¢
State Il 0.950: 0.9851
State IV 0.9707 0.9981
Statel 1.0 1.0
LSTM-AE Statell 1.0 1.0
(15 time steps)| Statelll 1.0 1.0
StatelV 1.0 1.0

Table VI: Performance evaluation of supervised
learning condition diagnosis model using accuracy

Accuracy
Model
3 Inputs 7 Inputs
DNN 0.8312 0.8961
LSTM
(2 ime steg) 0.8356 0.8496
LSTM
(5 ime steg) 0.8361 0.8525
LSTM
(10 ime stefs) 0.9268 0.9756
LSTM
(15time steps) 10 10

6. Conclusions

In this study, an Al-based framework is proposed fo
condition diagnosis and failure prediction of theR
components, using the accelerated aging data off IGB
provided by NASA for initial modeling. This resehrc
was conducted using four Al models: DNN, LSTM, AE,
and LSTM-AE. This study aims to accurately diagnose
the condition of RPS components and predict fadure
early, thereby improving the safety of NPPs.

Experimental results showed that the LSTM-AE
model with 128 units, 7 variables, and 15 time step
exhibited the best performance among all the fault
detection models built using the entire dataseth &n
AUC value of 0.9989. This indicates that the LSTM-A
model is capable of accurately capturing the tewmpor
continuity of data, and based on this, it can melygi
detect failure.

Furthermore, in the case of unsupervised learning
models for condition diagnosis, the LSTM-AE model
showed the best performance with an AUC of 1 when
trained on segment specific data. In the case of
supervised learning models, the LSTM model using 15
time steps showed the best performance with arracgu
of 1. This suggests that LSTM can effectively handl
long-term dependencies in data and accurately jtiuge
condition of RPS components.

Through this study, it is expected that the Al-lihse
diagnostic and prediction models to be developetien
future will accurately assess the condition of RPS
components in NPPs and detect potential failurely,ea
contributing to the safe operation of NPPs. Thesdets
are also expected to provide advantages such as
improving the efficiency of regular maintenance kvor
and reducing unnecessary replacement costs.
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