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1. Introduction 

 
Nuclear Power Plants (NPPs) are safety-critical 

facilities, and minimizing human errors during operation 
is essential for maintaining safety. Accordingly, many 
studies are being conducted to reduce human errors. 
Among them, Artificial Intelligence (AI)-based decision 
support systems are being researched to minimize 
human errors by operators. However, the black-box 
characteristics of AI need to be addressed before these 
studies can be applied in the field.  

Recently, eXplainable AI (XAI) methods have been 
developed to address the black-box characteristics of AI 
systems. The XAI methods can provide users with an 
explanation of why the AI’s output values were derived. 
These XAI methods are being applied to AI-based 
decision support systems to reduce human error in NPPs. 
AI-based decision support systems are categorized into 
supervised learning-based classification and regression 
problems, as well as unsupervised learning-based 
anomaly detection. The application of XAI to 
supervised learning-based models is an active area of 
research. On the other hand, the application of XAI to 
unsupervised learning-based AI models is still limited. 
Therefore, this study utilizes the One-Class Support 
Vector Machine (OCSVM) with rule extraction method. 
It combines OCSVM, an unsupervised learning-based 
AI method, and rule extraction method, an XAI method. 
As part of the primary research to evaluate the 
applicability of the OCSVM with rule extraction, two 
case studies are conducted as follows: 

(1) Anomaly detection using accelerated aging data 
of Insulated Gate Bipolar Transistor (IGBT)  

(2) Anomaly detection using NPP simulation data 
The IGBT data are sourced from open-source data 

provided by the National Aeronautics and Space 
Administration (NASA), and NPP simulation data are 
collected using a Compact Nuclear Simulator (CNS). 
An anomaly detection model is developed and evaluated 
in the case study using the OCSVM method. 
Additionally, rule extraction is performed based on the 
pre-trained anomaly detection model. The extracted 
rules can identify the logical structure of OCSVM (e.g., 
the boundary of the normal region can be identified as 
the rules). Consequently, it is expected to be a useful 
tool to enhance the interpretability of OCSVM-based 
anomaly detection models. 

2. Methods 
 

This section introduces OCSVM and rule extraction 
and describes the method that combines them, known as 
OCSVM with rule extraction.   

 
2.1 OCSVM 

 
The OCSVM method [1] is derived from traditional 

SVM method. The SVM method is a supervised 
learning algorithm primarily utilized for classification 
and regression problems. As a supervised learning 
algorithm, it necessitates a labeled dataset. Additionally, 
it employs a kernel function to transform the data into a 
high-dimensional feature space. This enables it to solve 
non-linear problems and facilitates the recognition of 
relationships between the data. The primary goal of the 
SVM method is to establish a decision boundary 
between datasets. Fig. 1 illustrates the hyperplane and 
the line with support vectors separating two datasets 
(i.e., ‘+’ and ‘-’). Here, the greater the distance between 
the hyperplane and the line with support vectors, the 
higher the confidence level, indicating that training 
progresses toward enlarging the margin. 

 

 
 

Fig. 1. SVM configuration; hyperplane, line with support 
vectors, and margin. 

 
The OCSVM method is trained similarly to the SVM 

method. However, the OCSVM method differs because 
it is an unsupervised learning algorithm. This means that 
unlabeled data are used; thus, the margin between the 
data is not utilized, as depicted in Fig. 1. In the OCSVM 
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method, the margin is the distance between the origin 
and the hyperplane, as depicted in Fig. 2; similarly to 
the SVM method, training aims to maximize the margin. 

 

 
 

Fig. 2. OCSVM configuration; hyperplane, and margin. 
 
The primary hyper-parameters of the OCSVM 

method are υ  and γ . υ  represents the upper bound on 

the learning error rate and the lower bound on the 
support vector rate (which primarily determines the 
anomaly detection boundary). γ  is the coefficient for 

the radial basis function kernel, influencing the 
curvature of the decision boundary. The complexity of 
the algorithm increases as both hyper-parameter values 
increase, so it is crucial to find the parameter values that 
optimized performance. 

 
2.2 OCSVM with rule extraction 
 

The rule extraction method [2] employs a clustering 
algorithm to generate a hypercube. The hypercube 
represents boundary regions in a multi-dimensional 
feature space. The implementation of this hypercube 
involves the following steps: 

(1) Obtaining clustering results: 
- Clustering algorithms such as k-means and k-

prototypes are employed to group the data into 
clusters, utilizing the outcomes of the OCSVM-
based anomaly detection model. 

(2) Finding the boundary points of each cluster: 
- To determine the boundaries of each cluster, 

certain data points belonging to that cluster are 
selected. 

- The minimum and maximum values of the 
selected data points define the boundaries, and 
this process is repeated for each variable. 

(3) Constructing a hypercube in a multi-dimensional 
feature space: 

- Combining the ranges for each variable to create 
a hypercube. 

(4) Verifying the hypercube boundaries: 

- Verify if outliers exist within the hypercube and 
repeat the hypercube creation process until no 
outliers are present. 

The boundary conditions of these hypercubes serve as 
rules. In other words, the boundary conditions of the 
OCSVM-based anomaly detection model can be 
articulated as rules. 

 
3. Data Preparation 

 
This section describes the datasets used in the case 

study and discusses data standardization.  
 

3.1 IGBT accelerated aging data 
 
The data on accelerated aging of IGBTs are obtained 

from open-source data [3]. The IGBT data were 
subjected to accelerated aging by applying temperature 
and voltage conditions higher than the design 
characteristics. As the IGBT ages, it will fail, with the 
failure symptom being latch-up. Latch-up causes a low 
output voltage relative to the supply voltage, as shown 
in Fig. 3. The difference between the supply and output 
voltage is defined as the degradation characteristic. The 
failure criterion is the point where the output voltage 
drops sharply. The IGBT datasets include information 
for 4 devices, experimental temperature and voltage, 
and degradation characteristics. For anomaly detection 
model development, we only use operation time, 
temperature, and voltage. The other variables, including 
degradation characteristics, are not available in the field 
and are therefore excluded from the AI model 
development. Additionally, we used normal condition 
data for 3 devices to train the anomaly detection model. 
The normal condition data for the remaining 1 device 
and all anomaly data were used for validation. 

 

 
 
Fig. 3. Degradation characteristic of IGBT data; note the low 
output voltage (blue line) relative to the supply voltage 
(orange line). 
 
3.2 NPP simulation data 
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The NPP simulation data were collected using the 
CNS. The collected data were divided into normal 
operating data for training the anomaly detection model 
and abnormal operating data for validation. Loss of 
coolant accident and steam generator tube rupture 
scenarios are utilized for the abnormal operating data. 
Similar to the IGBT dataset, only the normal operating 
data are used for training. The validation and test data 
utilize a subset of the normal operating data and all of 
the abnormal operating data. 137 variables were 
selected as input for the AI based on the symptom 
requirements of each scenario.   
 
3.3 Data standardization 
 

Data standardization is a scaling method that makes 
the mean 0 and the variance 1 for each variable; that is, 
the values are transformed to have a Gaussian normal 
distribution. This is expressed as in Eq. (1). 
 

( )

( )

x mean x
x

std x

−′ =  (1) 

 
This not only prevents learning from being dependent 

on the magnitude of the variable values, but also 
contributes to faster learning. 

 
4. Case Study 

 
This section discusses a series of case studies that 

utilize the OCSVM method to develop anomaly 
detection models and then extract rules. The used data 
are IGBT data and NPP simulation data. 
 
4.1 Development of anomaly detection model and rule 
extraction using IGBT data 

 
An anomaly detection model is developed and 

optimized using the IGBT data. Then, based on the pre-
trained anomaly detection model, rules are extracted 
using a rule extraction method. The training data are 
normal data for 3 devices, as described earlier. The 
validation and test data consist of normal and anomaly 
for the remaining 1 device. A grid search algorithm is 
utilized, and the υ and γ values are optimized. The 

optimized model is selected based on three metrics 
calculated using the values (i.e., TP, FP, FN, TN) from 
Table Ⅰ.  

 

Table I: Confusion Matrix for Anomaly Detection Model 
Evaluation 

 Expected 

Predicted 
 Normal Abnormal 

Normal TP FP 
Abnormal FN TN 

The optimization criteria are based on the following 
evaluation metrics: 

(1) Metric 1: percentage of samples predicted to be 
normal that are actually normal (for training data; 
normal data only) (refer to Eq. (2)) 
 

1  for training dataTP
TP FPMetric +=  (2) 

 
(2) Metric 2: percentage of samples predicted to be 

normal that are actually normal (for validation 
data; normal data only) (refer to Eq. (3)) 
 

2  for validation dataTP
TP FPMetric +=  (3) 

 
(3) Metric 3: percentage of samples predicted to be 

abnormal that are actually abnormal (for 
validation data; abnormal data only) (refer to Eq. 
(4)) 
 

3  for validation dataTN
TN FNMetric +=  (4) 

 
The highest performance is observed for the hyper-

parameter condition with 0.1υ =  and 0.4γ = ; the 

performance percentages for each metric are 90.57% 
(metric 1), 96.9% (metric 2), and 100% (metric 3). The 
results obtained through rule extraction based on the 
optimized model are shown below, with 9 rules were 
extracted. The rules are divided into the ranges of the 
input variables, such as time (operation time), 
temperature, and voltage. 

(1) (62 ≤ time ≤ 784) and (100 ≤ temperature 
≤ 240) and (2.5 ≤ voltage ≤ 4.5) 

(2) (902 ≤ time ≤ 1504) and (265 ≤ temperature 
≤ 280) and (5 ≤ voltage ≤ 5.5) 

(3) (600 ≤ time ≤ 1085) and (240 ≤ temperature 
≤ 265) and (voltage = 5) 

(4) (2280 ≤ time ≤ 2281) and (temperature = 100) 
and (voltage = 5.5) 

(5) (1440 ≤ time ≤ 1805) and (265 ≤ temperature 
≤ 280) and (5 ≤ voltage ≤ 6) 

(6) (1861 ≤ time ≤ 1924) and (temperature = 280) 
and (voltage = 6) 

(7) (1800 ≤ time ≤ 1985) and (265 ≤ temperature 
≤ 280) and (voltage = 5.5) 

(8) 2041 ≤ time ≤ 2223) and (temperature = 265) 
and (voltage = 5.5) 

(9) (2042 ≤ time ≤ 2105) and (temperature = 280) 
and (voltage = 5.5) 

 
4.2 Development of anomaly detection model and rule 
extraction using CNS data 

 
An anomaly detection model is developed and 

optimized using CNS data. Similarly to the IGBT data, 
rules are extracted based on a pre-trained model. The 
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data were split into normal and abnormal data, as 
described in subsection 3.2, to serve as training, 
validation, and test data. The performance of the 
anomaly detection model using CNS data is as follows: 
95.12% (metric 1), 97.35% (metric 2), and 99.6% 
(metric 3). The hyper-parameters are 0.1υ =  and 

0.6γ = . The extracted rules based on the optimized 

model are shown in Fig. 4. All 137 variables are used as 
building blocks for the rules. As a result, 86 rules were 
extracted. 

 

 

 
 

Fig. 4. A portion of the rule extraction results from the CNS 
data-based anomaly detection. 
 

5. Conclusion 
 

AI-based decision support systems are actively being 
researched to reduce human error in the operation of 
NPPs. However, the black-box characteristics of AI can 
be an obstacle to the practical application of such 
research. Recently, XAI methods have been applied to 
solve this problem. However, most XAI applications are 
limited to supervised learning-based algorithms. 
However, many researchers are also developing 
anomaly detection models using unsupervised learning 
algorithms. Therefore, applying XAI methods to 
unsupervised learning algorithms is necessary. 

In this study, we consider the applicability of the 
OCSVM with rule extraction method, which combines 
the OCSVM method, an unsupervised learning 
algorithm, with the rule extraction method, an XAI 
algorithm. The case studies were performed to assess 

the applicability of: (1) anomaly detection using 
accelerated aging data of IGBT and (2) anomaly 
detection using NPP simulation data. The extracted 
rules reveal the logical structure of the OCSVM 
method-based anomaly detection models. These results 
are expected to enhance the interpretability of 
unsupervised learning-based anomaly detection models. 
However, a limitation exists: each input variable 
contributes to a rule, potentially complicating 
interpretation as the number of variables increases. This 
limitation is difficult to address because we ultimately 
extract rules based on the characteristics of the OCSVM 
model. In future work, we plan to explore other AI 
models or supplement the rule reduction technique to 
better reflect the characteristics of the data and derive 
interpretable rules. 
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