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1. Introduction 2. Methods

Nuclear Power Plants (NPPs) are safety-critical This section introduces OCSVM and rule extraction
fac”itieS, and m|n|m|z|ng human errors during qﬁmn and describes the method that combines them, kaswn

is essential for maintaining safety. Accordinglyamy ~ OCSVM with rule extraction.
studies are being conducted to reduce human errors.
Among them, Atrtificial Intelligence (Al)-based deiin 2.1 OCSVM
support systems are being researched to minimize
human errors by operators. However, the black-box The OCSVM method [1] is derived from traditional
characteristics of Al need to be addressed befwset SVM method. The SVM method is a supervised
studies can be applied in the field. learning algorithm primarily utilized for classiéition
Recently, eXplainable Al (XAl) methods have been and regression problems. As a supervised learning
developed to address the black-box characterisfiég algorithm, it necessitates a labeled dataset. Aufditly,
systems. The XAl methods can provide users with anit €émploys a kernel function to transform the data a
exp|anation of Why the Al's Output values were ded. high'dimensional feature space. This enables siotoe
These XAl methods are being applied to Al-based non-linear problems and facilitates the recognitafn
decision support systems to reduce human erroPiRd\  relationships between the data. The primary goahef
Al-based decision support Systems are Categormi SVM method is to establish a decision boundary
supervised learning-based classification and regpes ~ between datasets. Fig. 1 illustrates the hyperpéare
problems, as well as unsupervised learning-basedthe line with support vectors separating two datase
anomaly detection. The applicaton of XAl to (i.e., '+ and'-). Here, the greater the distartwetween
supervised learning-based models is an active afea the hyperplane and the line with support vectans, t
research. On the other hand, the application of Al  higher the confidence level, indicating that trai
unsupervised learning-based Al models is still tgdi ~ Progresses toward enlarging the margin.
Therefore, this study utilizes the One-Class Suppor
Vector Machine (OCSVM) with rule extraction method. 1
It combines OCSVM, an unsupervised learning-based
Al method, and rule extraction method, an XAl metho
As part of the primary research to evaluate the
applicability of the OCSVM with rule extraction, ow
case studies are conducted as follows:
(1) Anomaly detection using accelerated aging data
of Insulated Gate Bipolar Transistor (IGBT)
(2) Anomaly detection using NPP simulation data
The IGBT data are sourced from open-source data
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Line with support vectors

provided by the National Aeronautics and Space = o
Administration (NASA), and NPP simulation data are ,:{" o
collected using a Compact Nuclear Simulator (CNS). -
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An anomaly detection model is developed and evedliat

in the case study using the OCSVM method. rig 1 svM configuration; hyperplane, line withmort
Additionally, rule extraction is performed based tbe vectors, and margin.

pre-trained anomaly detection model. The extracted

rules can identify the logical structure of OCSV#Id., The OCSVM method is trained similarly to the SVM
the boundary of the normal region can be identiisd  method. However, the OCSVM method differs because
the rules). Consequently, it is expected to be &fulls it is an unsupervised learning algorithm. This nsetat
tool to enhance the interpretability of OCSVM-based ynlabeled data are used; thus, the margin between t
anomaly detection models. data is not utilized, as depicted in Fig. 1. In @@SVM
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method, the margin is the distance between thdnorig - Verify if outliers exist within the hypercube and
and the hyperplane, as depicted in Fig. 2; sinyiléol repeat the hypercube creation process until no
the SVM method, training aims to maximize the margi outliers are present.

The boundary conditions of these hypercubes sexve a
rules. In other words, the boundary conditions haf t
OCSVM-based anomaly detection model can be

A

arh? "
ok articulated as rules.
\\\\I;-\l _ )
@ 3. Data Preparation
N Oy,
P e This section describes the datasets used in the cas
~, 3, . . .
= P AU study and discusses data standardization.
~-’ N,

3.1 IGBT accelerated aging data
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\:i-) Normal data

(23 Abnormal dat The data on accelerated aging of IGBTs are obtained
2= - from open-source data [3]. The IGBT data were
Origin ” subjected to accelerated aging by applying tempegat
and voltage conditions higher than the design
Fig. 2. OCSVM configuration; hyperplane, and margin. characteristics. As the IGBT ages, it will fail, thvithe

failure symptom being latch-up. Latch-up causesva |
The primary hyper-parameters of the OCSVM output voltage relative to the supply voltage, hev
method arev and y. v represents the upper bound on in Fig. 3. The difference between the supply anghau
the learning error rate and the lower bound on the Vvoltage is defined as the degradation characteriStie
support vector rate (which primarily determines the failure criterion is the point where the output tage
anomaly detection boundaryy. is the coefficient for ~ drops sharply. The IGBT datasets include infornmtio
the radial basis function kernel, influencing the for 4 devices, experimental temperature and vojtage
curvature of the decision boundary. The complemity and degradation characteristics. For anomaly detept
the algorithm increases as both hyper-parameteresal Model development, we only use operation time,
increase, so it is crucial to find the parameténemthat ~ (€MPerature, and voltage. The other variablesydtiog

optimized performance. degradation characteristics, are not availabl&énfield
and are therefore excluded from the Al model
22 OCSVM with rule extraction development. Additionally, we used normal condition

data for 3 devices to train the anomaly detectioaeh
The rule extraction method [2] employs a clustering The normal condition data for the remaining 1 devic
algorithm to generate a hypercube. The hypercubeand all anomaly data were used for validation.
represents boundary regions in a multi-dimensional ;
feature space. The implementation of this hypercube = gzi}::[';“‘:;zgwsw ____ - |,|
involves the following steps:

(1) Obtaining clustering results: ”""I"I"I"III"
- Clustering algorithms such as k-means and k- I“I"“"

w
L

prototypes are employed to group the data into
clusters, utilizing the outcomes of the OCSVM-
based anomaly detection model.
(2) Finding the boundary points of each cluster:
- To determine the boundaries of each cluster, | \
selected
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Collector-emitter voltage [V]

¥

certain data points belonging to that cluster are

- The minimum and maximum values of the * 1000 1500 2000 2500
selected data points define the boundaries, and Time (sec)
this process is repeated for each variable.
(3) Constructing a hypercube in a multi-dimensional Fig. 3. Degradation characteristic of IGBT data;eribie low
feature space: output voltage (blue line) relative to the suppijtage
- Combining the ranges for each variable to create (0range line).
a hypercube. _ _
(4) Verifying the hypercube boundaries: 3.2 NPP simulation data
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The NPP simulation data were collected using the The optimization criteria are based on the follayin
CNS. The collected data were divided into normal evaluation metrics:

operating data for training the anomaly detectiadeh (1) Metric 1: percentage of samples predicted to be
and abnormal operating data for validation. Loss of normal that are actually normal (for training data;
coolant accident and steam generator tube rupture normal data only) (refer to Eq. (2))

scenarios are utilized for the abnormal operatiatpad

Similar to the IGBT dataset, only the normal opierat Metricl = =° for training dat: (2)

data are used for training. The validation and tidt
utilize a subset of the normal operating data dhdfa
the abnormal operating data. 137 variables were
selected as input for the Al based on the symptom
requirements of each scenario.

(2) Metric 2: percentage of samples predicted to be
normal that are actually normal (for validation
data; normal data only) (refer to Eq. (3))

Metric2 = == for validation dat: 3)

TP+FP

3.3 Data standardization

Data standardization is a scaling method that makes (3) Metric 3: percentage of samples predicted to be

the mean 0 and the variance 1 for each variabéd;ish abnormal that are actually abnormal (for

the values are transformed to have a Gaussian horma validation data; abnormal data only) (refer to Eq.

distribution. This is expressed as in Eq. (1). 4))

o = X —mean(x) ) Metric3 = = for validation dat: 4)
std(x)

The highest performance is observed for the hyper-

This not only prevents learning from being dependen Parameter condition withv =0.1 and y=0.4; the
on the magnitude of the variable values, but also performance percentages for each metric are 90.57%

contributes to faster learning. (metric 1), 96.9% (metric 2), and 100% (metric Bje
results obtained through rule extraction based hen t
4. Case Study optimized model are shown below, with 9 rules were

extracted. The rules are divided into the rangethef
This section discusses a series of case studi¢s thanput variables, such as time (operation time),
utilize the OCSVM method to develop anomaly temperature, and voltage.
detection models and then extract rules. The usea d (1) (62 <time <784) and (100 < temperature

are IGBT data and NPP simulation data. < 240) and (2.5 voltage< 4.5)
_ (2) (902 <time <1504) and (265< temperature
4.1 Development of anomaly detection model and rule < 280) and (5< voltage< 5.5)

extraction using IGBT data (3) (600 <time <1085) and (240< temperature

< 265) and (voltage = 5)

An anomaly detection model is developed and :
(4) (2280 <time < 2281) and (temperature = 100)

optimized using the IGBT data. Then, based on the p

trained anomaly detection model, rules are extdacte and (voltage = 5.5)
using a rule extraction method. The training dat a  (5) (1440 <time = 1805) and (265<= temperature
normal data for 3 devices, as described earliee Th = 280) and (5= voltage= 6)
validation and test data consist of normal and aipm (6) (1861 <time < 1924) and (temperature = 280)
for the remaining 1 device. A grid search algoritlem and (voltage = 6)
utilized, and theuv and y values are optimized. The (7) (1800 <time < 1985) and (265< temperature
optimized model is selected based on three metrics = 280) and (voltage = 5.5)
calculated using the values (i.e., TP, FP, FN, Trhin (8) 2041 <time < 2223) and (temperature = 265)
Tablel. and (voltage = 5.5)
(9) (2042 <time < 2105) and (temperature = 280)
Table I: Confusion Matrix for Anomaly Detection Mdde and (voltage = 5.5)
Evaluation

4.2 Development of anomaly detection model and rule

Expected extraction using CNSdata
Normal Abnormal
Predicted | Normal P FP An anomaly detection model is developed and
Abnormal FN TN optimized using CNS data. Similarly to the IGBT alat

rules are extracted based on a pre-trained moded. T
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data were split into normal and abnormal data, asthe applicability of:

described in subsection 3.2, to serve as training
validation, and test data. The performance of the
anomaly detection model using CNS data is as falow
95.12% (metric 1), 97.35% (metric 2), and 99.6%
(metric 3). The hyper-parameters ate=0.1 and

y=0.6. The extracted rules based on the optimized
model are shown in Fig. 4. All 137 variables areduas

building blocks for the rules. As a result, 86 sulgere
extracted.

cqmb,mmdr categorical variables N* 1
RuI:\‘l IEBP‘.M;CO@BS“: 31277: mzmm¢94 7904319763184 AND CIODMPC <= 99.28454303466795
<=0.940339002418518 AND ZREAC <= 64624
nsmszs AND ZINST5 <= 136 346 ADZVeT =

AND UPRZ <= 340313612

<= 6531446075439453 AND
<1

00. I]SWZ?OEISBOGA\DLHOLE.G[c.J
<=3 314103315976306 AND BESVL
836 AND U

A\'LECm< 309368103

: =
1.7335204549789425 AND KBCDOL1 slmomnzms‘nés 2

AFDFSRMDW¢ -16813581571897805e-44 AND HCONC <= 0.0 AND BHV22 <= 0.0 AND BHV302 <=
N = 15430542 AND BHSV <= 1.0 AND KLAMPOLS <= 1.0 AND BLV4S < 0.0 AND KBCD
143 ==

16475492188 AND ZVCT ==
AND CRETLV ==
§ 131584765625 AND

WSPRAY >= 0.0 AND BEIV] >= 1.0 AND BRHCV
>=534.4196166992139 AND CHENPCM >= 26637

763384544371 AND ZDNST66 >= 0.0 AND ZINST103 >= 87.14859771728516 AND ZINSTS6
AND URHXUT 2= 142 6816864013672 AND ZCOND == 0.7786016464233398 AND

<D ZINST.
1UA1~‘DBF\49;>0:L
ZINSTTS >= 65
865478515625 AND UCOLEG3 =X
AND BTV415 >= 0.0 AND ZINST48 >=0.294;

953
9047317504893 AND FRQGEN
AND BEV2 >= L0 AND PVCT >= 1.731525182723999 AND KBCDOLI = 160.0 AND ZINST36 >=19.03361274169912 AND
UAVLEGS >= 305.3218078613281 AND BEVE >= 1.0 AND ZINST3 >= 0.0 AND KBCDOIS = 1500.0 AND KBCDO6 >= 128.0 AND ZINST26 5=
0.2516960799654061 AND KBCDOIS >=402.0 AND BHIBY >= 0.0 AND FSRMDEM >= -1.6815581571397805244 AND H2CONC >=0.0 AND BHVI2
>=0.0 AND BHV302 >= 0.0 AND EFV13 >= 0.0 AND KBCDOS >=228.0 AND ZINST22 >= 2.07918119430542 AND BHSV >= 1.0 AND KLAMPOIS >=
10A\‘DELNS¥OOANDECDO:>=JSDAND!(Bmﬂ?OxQDSDAND!(Bmﬂ]D: 2280 AND BTV143 >= 1.0 AND KLAMPO4S >=0.0 AND

APOS5 >= 0.0 AND KBCDO4 >= 228.0 AND KLAMPO22] >= 1.0 AND ELAA

=60 UANDP\ACxih 13134765625 AND

KL
MPO234 >= 1.0 AND BHV41 5= 0.0 AND KLAMPO119 = 0 AND
KLA.\&POUB 0 AND KLAMPO117 OANDKL.-L\WOIS 1 AND KLAMPO29 =0 AND KLAMPO? = 0 AND KLAMPO24] = 1 ANDKLAMPOL96 =1
AND KLAMPOI95 = 0 AND KFV610=

- Subgroup ] ——
Rule ¥° 1 IF BPV145 <=
1

0.6524736285209656 AND ZCNDTK <= 9.45296359741211 AND CIODMPC <= 99.29264831542969 AND UCHGUT <=
71557617 AND

56 5
45 AND BHV] <= 1.0 AND BRHCV <= 09847 96&1‘:343:14A_\'DBNS’I'G&¢4;lJUDS>4003§DﬁA_\DZ]I\ISTlU;c §7.0527
ZINSTB6 == 534.3170776367139 AND CHEMPCM <= 2636357421575 AND UREIXUT == 114.27513122558554 AND ZOOND <= 0.781 5500444584436
AND ZINSTI08 <= 39.53936146240234 AND ZINST6S <= 1.0064274072647097 AND ZINST1 <= 99.35131072998048 AND BPORV == 0.0 AND BFV122

Fig. 4. A portion of the rule extraction resulterfr the CNS
data-based anomaly detection.

5. Conclusion

Al-based decision support systems are activelygoein
researched to reduce human error in the operation o
NPPs. However, the black-box characteristics ot#dd
be an obstacle to the practical application of such
research. Recently, XAl methods have been apptied t
solve this problem. However, most XAl applicati@re
limited to supervised learning-based algorithms.
However, many researchers are also developing
anomaly detection models using unsupervised legrnin
algorithms. Therefore, applying XAl methods to
unsupervised learning algorithms is necessary.

In this study, we consider the applicability of the
OCSVM with rule extraction method, which combines
the OCSVM method, an unsupervised learning
algorithm, with the rule extraction method, an XAl
algorithm. The case studies were performed to asses

(1) anomaly detection using

,accelerated aging data of IGBT and (2) anomaly

detection using NPP simulation data. The extracted
rules reveal the logical structure of the OCSVM
method-based anomaly detection models. These sesult
are expected to enhance the interpretability of
unsupervised learning-based anomaly detection reodel
However, a limitation exists: each input variable
contributes to a rule, potentially complicating
interpretation as the number of variables increabes
limitation is difficult to address because we uliely
extract rules based on the characteristics of (BEVYM
model. In future work, we plan to explore other Al
models or supplement the rule reduction technigue t
better reflect the characteristics of the data dedve
interpretable rules.
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