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1. Introduction 

 
With recent significant advancements in computing 

resources, the Monte Carlo (MC) approach for practical 

reactor analysis, particularly in cross-section generation 

for lattice calculations, has garnered increased attention 

[1]. Fundamental aspects of a reactor system encompass 

the multiplication factor, power distribution, and adjoint-

weighted effective kinetic parameters. While the 

mathematical foundations for the former two quantities 

were laid down during the initial introduction of the MC 

method, the determination of effective kinetic 

parameters remained ambiguous until the emergence of 

the Iterated Fission Probability (IFP) method in the late 

2000s [2-3]. 

The determination of effective kinetic parameters in 

MC simulations requires the implementation of an 

adjoint flux-weighted tally. While one might consider 

pre-calculating an adjoint flux distribution using a 

'backward' approach, the inherent ambiguity in the 

inversion of scattering laws, requiring particles to scatter 

opposite to the normal energy transfer, makes backward 

continuous-energy MC calculations challenging [4]. 

In contrast, the IFP method addresses adjoint 

information by tracking the evolution of source neutrons 

throughout cycles. This approach eliminates the need for 

the direct calculation of adjoint flux to assess effective 

kinetic parameters and has proven successful in various 

MC codes, including the iMC code developed at the 

Korea Advanced Institute of Science and Technology 

(KAIST) [5-6]. 

Beyond the calculation of effective kinetic parameters, 

involving integration over the entire phase-space, there 

is potential for a phase-space-wise integration to assess 

the distribution of adjoint information [7-8]. This paper 

presents IFP-based adjoint flux calculation results for 

various benchmarks using the iMC code, with 

comparisons made against deterministic results for 

validation purposes. 

 

2. Iterated Fission Probability (IFP) Method 

 

The adjoint flux is a measure of the significance of 

particles generated at a specific phase-space point 

𝜃 (𝑟0, Ω⃗⃗⃗0, 𝐸0) in contributing to fission reactions. In the 

context of a steady-state reactor scenario, where the 

fission source distribution ultimately reaches 

convergence, the mathematical representation of the 

extent of fission reactions originating from a source 

neutron at a given phase-space also converges. 

Expanding on this interpretation, the Iterated Fission 

Probability (IFP) is defined as the asymptotic count of 

fission neutrons arising from a neutron at phase-space 𝜃, 

and this definition is mathematically identical to the 

adjoint flux [2]. 

In practice, a certain number of cycles, which is 

referred to as a latent cycle (L), must pass to approach 

the asymptotic power. Hence, by tracking the fission-

born neutrons throughout the cycles, which are referred 

to as progenies, the IFP quantity for the phase-space of 

interest can be deduced. Note that the original source of 

progenies that have been banked L cycles before is 

referred to as progenitor. 

The acquired IFP information throughout the cycle is 

then used for calculating the effective kinetic parameters. 

Note that the integration is performed over the whole 

phase-space, i.e., point reactor model.  

The effective delayed neutron fraction for the kth group 

(𝛽𝑑,𝑘) is obtained as: 
 

 

,†

,

,
†

( )
( , , ), , , )

4
,

( )
( , , ), , ,

(

)
4

(

d k

d k

d k

E
r E F r E

E
r E F r E

 














 

=

 

 
(1) 

 

where bracket denotes phase-space integration, 𝜑† is the 

adjoint flux, 𝜒(𝐸)  denotes the fission spectrum, and 

notations 𝐹𝜑 and 𝐹𝑑,𝑘𝜑 are defined as below: 
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The effective generation time can be calculated as 

following: 
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where k0 is the multiplication factor for the steady-state, 

and v(E) is the speed of the neutron of interest. 
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Similar to the methodology employed in evaluating 

effective kinetic parameters, the integration of adjoint 

flux weighting can be executed within a designated 

phase-space range of interest. This enables the 

preservation of representative position and energy details, 

essentially capturing the phase-space dependency.  

 

 
Fig 1. Schematic for tallying adjoint flux distribution. 

 

Consequently, one can consider tallying the adjoint-

weighted variable within a mesh-based framework. To 

approximate the mesh-based representation of adjoint 

flux information, illustrated in Fig. 1, the following 

approach is applied: 

 

 

†

†
( , , ), , , )

( , , ) ,
(

1, , , )(

r
i

r

r E r E
r E

r E

 




 




 
(5) 

 

where subscript r for the integration indicates phase-

space range of interest and its corresponding 

representative phase-space values for mesh-based 

description, e.g., node i, are denoted as (𝑟𝑖,𝐸𝑖,Ω⃗⃗⃗𝑖).   

The denominator of Eq. (5) can be tallied using the 

track length estimator for the flux 
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where the summation is performed over all particle 

tracks Τ residing within the phase-space range of interest 

denoted as r. Notations w and l are the weight and track 

length of the particle, and Vr is the volume corresponding 

to the phase-space range of interest. The current phase-

space information of the particle track is represented as 

q and δ𝑟𝑞 is the Kronecker delta function being unity if 

and only if when 𝑞 ∈ 𝑟. 

To tally the numerator of Eq. (5), which is the adjoint 

flux-weighted forward flux, the following approach is 

taken: 
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where C is an arbitrary constant depending on the 

characteristics of the detector response function, and 

subscript p represents the source of progeny, i.e., 

progenitor, which is the banked neutron source during 

transport process. The weight w0 corresponds to the 

initial weight of the particle born from the progenitor, 

and ls is the track length of such a particle that results in 

a fission reaction for its asymptotic population, where the 

subscript s represents the phase-space information of the 

particle. Note that the fission reaction term in Eq. (7), 

which embodies the adjoint flux information, is 

evaluated for particle tracks Τ which originate from the 

progenitor after passing the latent cycles (L), i.e., 

asymptotic population. 

 

3. Numerical Results 

 

As aforementioned, the iMC code incorporates the IFP 

method for the assessment of effective kinetic 

parameters and adjoint flux distribution. To validate the 

effective kinetic parameter tallying, a comparison has 

been conducted with the validated Serpent 2 MC code for 

the VERA 1A and 1B benchmarks [9]. Both iMC and 

Serpent 2 assumed 15 latent cycles, comprising 100 

inactive cycles followed by 500 active cycles, with 

400,000 histories per cycle with ENDF/B-VII.1 library. 

Tables 1 and 2 enumerate the calculated results 

respectively, where reasonable agreement between the 

codes can be observed. 

 

Table 1. VERA 1A benchmark result 
Values Serpent2 iMC 

keff [-] 1.18718 (3.9) 1.18711 (6.5) 

𝛽𝑒𝑓𝑓  [pcm] 687.3 (2.6) 683.7 (1.9) 

𝛽1 [pcm] 21.6 (0.5) 21.0 (0.3) 

𝛽2 [pcm] 117.1 (1.0) 117.9 (0.8) 

𝛽3 [pcm] 114.0 (1.0) 114.4 (0.7) 

𝛽4 [pcm] 264.3 (1.6) 263.0 (1.2) 

𝛽5 [pcm] 120.9 (1.1) 117.9 (0.8) 

𝛽6 [pcm] 49.5 (0.7) 49.5 (0.5) 

Λ [10-9 s] 17916.5 (6.3) 17911.1 (4.5) 

*Uncertainty of 1σ given within the bracket. 

 

Table 2. VERA 1B benchmark result 
Values Serpent2 iMC 

keff [-] 1.18222 (4.1) 1.18222 (6.5) 

𝛽𝑒𝑓𝑓  [pcm] 686.3 (2.6) 686.7 (1.8) 

𝛽1 [pcm] 21.5 (0.4) 21.6 (0.3) 

𝛽2 [pcm] 114.3 (1.0) 117.5 (0.8) 

𝛽3 [pcm] 113.4 (1.0) 112.9 (0.8) 

𝛽4 [pcm] 265.8 (1.6) 264.1 (1.1) 

𝛽5 [pcm] 121.5 (1.1) 120.0 (0.8) 

𝛽6 [pcm] 49.8 (0.7) 50.6 (0.5) 

Λ [10-9 s] 18072.9 (6.5) 18078.1 (4.8) 

*Uncertainty of 1σ given within the bracket. 

 

To assess the applicability of Eq. (5) for estimating 

adjoint flux distribution, a one-group one-dimensional 

slab reactor having a length of 20 cm with the following 

cross-sections have been considered: 
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Table 3. One-group cross-sections for the slab reactor. 

Cross-sections Values 

𝛴𝑡 1.0 cm-1 

𝛴𝑎 0.3 cm-1 

𝛴𝑓 0.2 cm-1 

𝛴𝑠 0.7 cm-1 

ν 1.5 [-] 

 

The deterministic adjoint solution was obtained 

through an in-house code based on the discrete ordinate 

method (SN=20) with Gauss-Legendre quadrature set and 

a spatial discretization of 0.05 cm  

 

 
−Ω⃗⃗⃗ ∙ ∇𝜑†(�⃗�, Ω⃗⃗⃗)|

Ω⃗⃗⃗𝑛
+ 𝜎(𝑟)𝜑†(𝑟, Ω⃗⃗⃗𝑛)

= 𝑞†(𝑟, Ω⃗⃗⃗𝑛), 
(8) 

 

where all the notations are that of the convention [10]. 

Both vacuum and reflective boundary conditions are 

expressed as: 

 

 𝜑†(𝑟𝑠, Ω⃗⃗⃗𝑛) = 0   (�̂�𝑠 ∙ Ω⃗⃗⃗𝑛 > 0), (9a) 

 

 𝜑†(𝑟𝑠, Ω⃗⃗⃗𝑛) = 𝜑†(𝑟𝑠, Ω⃗⃗⃗𝑚)   (�̂�𝑠 ∙ Ω⃗⃗⃗𝑛 > 0), (9b) 

 

respectively, with ordinates Ω⃗⃗⃗𝑛 and Ω⃗⃗⃗𝑚 (𝑛≠𝑚) satisfy 

 

 
�̂�𝑠 ∙ Ω⃗⃗⃗𝑛 = −�̂�𝑠 ∙ Ω⃗⃗⃗𝑚, 

 

�̂�𝑠 ∙ (Ω⃗⃗⃗𝑛 × Ω⃗⃗⃗𝑚) = 0. 
(10) 

 

In the iMC calculation, a spatial discretization of 0.5 

cm was utilized for tallying Eq. (5). Figure 2 illustrates a 

comparison of the results, considering various latent 

cycle numbers. It is evident that an insufficient number 

of latent cycles introduces noticeable bias, with a 

recommended minimum of 14 latent cycles. It is 

important to note that the uncertainty range of the 

Iterated Fission Probability (IFP)-based adjoint flux is 

marginal, a detail not visually discernible from the 

markers and therefore omitted throughout this work. 

 

 

 
Fig 2. Adjoint flux distribution for slab reactor with 

various number of latent cycles. 

 
Fig 3. Condensed adjoint flux distribution 

 

Figure 3 presents the condensed results from 

deterministic angular flux, employing the same node size 

as the MC simulation in accordance with Eq. (5). Both 

the Monte Carlo and condensed deterministic solutions 

exhibit strong agreement, although they deviate from the 

fine-mesh-wise S20 result. 

Analogous to the spatial distribution, an energy-

dependent adjoint flux (or spectrum) can be derived, 

encompassing both multi-group (MG) and continuous-

energy (CE) problems for validation purposes. In the MG 

scenario, a pin-cell from the C5G7 benchmark is 

considered, where a comparison is made with respect to 

the deterministic solution based on the Method of 

Characteristics (MOC) as shown in Fig. 4 [11]. Note that 

the iMC solution postulated latent cycle number of 15. 

In the context of the continuous-energy (CE) problem, 

the previously mentioned VERA 1A configuration has 

been considered. The adjoint spectrum was computed 

using the HELIOS 47 group structure, and a comparison 

was conducted with the physical adjoint obtained from 

the MOC solution [11]. The results are illustrated in Fig. 

5, where variation in the latent cycle number is 

considered. It can be seen that a reasonable agreement is 

met between the solutions, even with a latent cycle 

number of 10. This suggests that the adjoint spectrum 

may exhibit relatively less sensitivity to the latent cycle 

number compared to the spatial adjoint flux distribution. 

 

 
Fig 4. Adjoint spectrum for C5G7 pin-cell problem. 
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Fig 5. Adjoint spectrum for VERA 1A problem. 

 

4. Conclusions 

 

In this study, the concept of iterated fission probability 

(IFP) and its application for estimating both adjoint flux 

weighted effective kinetic parameters and distribution of 

adjoint flux have been investigated using the iMC Monte 

Carlo code. The IFP method involves tracking the source 

of fission-born neutrons and their progenies over a 

sufficient number of latent cycles to enable the tallying 

of the integral form of the effective kinetic parameters. 

In the assessment of the adjoint flux distribution, a mesh-

based representation is envisaged, wherein adjoint 

weighted flux values are recorded for each node. 

Subsequently, by dividing with the mesh-based flux 

distribution, the adjoint flux distribution can be 

determined. 

To validate the computed effective kinetic parameters, 

the VERA 1A and 1B benchmarks were employed, and 

the results were compared with those obtained from 

Serpent 2. Spatial tallying of the adjoint flux distribution 

was conducted for a one-group one-dimensional slab 

reactor, while considering both multi-group and 

continuous-energy pin cell problems for the adjoint 

spectrum. The tallied adjoint flux distribution was 

subsequently compared with deterministic transport 

solutions. The obtained results consistently demonstrated 

a reasonable agreement, affirming the suitability of the 

IFP-based solution computed using the iMC code. As 

part of future research endeavours, emphasis will be 

placed on algorithmic enhancements aimed at optimizing 

computing efficiency for IFP-based evaluations. 
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