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1. Introduction 

 
Supercritical carbon dioxide (sCO2) cycles have 

garnered significant attention in recent years due to their 
potential to revolutionize energy conversion processes. 
These cycles operate at pressures and temperatures 
above the critical point of CO2, resulting in higher 
thermal efficiencies and compact system designs 
compared to traditional steam cycles. Utilizing the 
unique properties of sCO2, KAIST research team have 
developed the KAIST-MMR (Micro Modular Reactor), 
utilizing a simple recuperated cycle layout [1]. 

One of the key advantages of sCO2-cooled reactors, 
such as the KAIST-MMR, lies in their ease of control 
during load-following operation. Since sCO2 is 
compressible fluid, the control of reactor power through 
inventory control of the coolant can be well utilized. 
Additionally, the single-phase nature of the power 
conversion system and the simplicity of the layout 
contribute to the system's suitability for load-following 
operation. These factors make sCO2-cooled nuclear 
systems well-suited for responding to fast varying power 
demands, offering potential advantages in terms of 
flexibility and efficiency. Operating under load-
following conditions, where power output adjusts to 
meet varying demands, necessitates a thorough 
understanding of the system's dynamic behavior. 
Efficient and precise prediction of system dynamics 
during load-following operation is crucial for optimizing 
control strategies to ensure safety and reliability while 
maximizing efficiency. 

Reinforcement learning (RL) has emerged as a 
promising approach for optimizing control policies in 
complex dynamic systems. RL algorithms learn through 
interaction with the environment, making accurate 
simulation of system dynamics imperative. Hence, the 
development of a reliable surrogate model capable of 
accurately capturing the system's transient behavior 
becomes essential for leveraging RL in the KAIST-
MMR system. 

In this study, the authors have developed a time-series 
surrogate model using a combination of convolutional 
neural networks (CNN) and long short-term memory 
(LSTM) networks. Leveraging a vast dataset of load-
following operation simulations generated by the MARS 
code, this model aims to accurately emulate the system's 
dynamic response to different operating conditions. By 
providing a fast and accurate representation of system 

dynamics, the proposed surrogate model lays the 
foundation for efficient RL-based control optimization in 
the KAIST-MMR system. 

 
2. Methods and Results 

 
2.1 Target system 

 
The target system referenced in this study is the 

KAIST-MMR. While the original KAIST-MMR 
employs an air-cooled pre-cooler, where the compressor 
inlet temperature is set relatively high at 60oC, this 
research focuses on a modified version, namely the 
marine type KAIST-MMR. In this variant, the 
compressor inlet temperature is designed at 35oC 
following the replacement of the ultimate heat sink from 
air to water. Figure 1 illustrates the system layout of the 
target system. Table I presents the design points at 
various locations within the system, providing key 
parameters such as pressure, temperature, and mass flow 
rate. 
 

 
Fig. 1. System layout. 
 

Table I. System design points 
Location Pressure 

[MPa] 
Temperature 
[oC] 

Mass flow 
rate [kg/s] 

1 22.35 550 115.35 
2 8.35 437.59 115.35 
3 8.1 103.58 115.35 
4 8.0 35 115.35 
5 22.7 88.73 115.35 
6 22.6 340.48 115.35 

 
 
2.2 Data production 
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The authors have modified the MARS code, a nuclear 
thermal-hydraulic analysis tool, to facilitate sCO2 
analysis [2]. Load-following operation data were 
generated using this modified MARS code. The 
simulation scenario consisted of a 600-second duration, 
during which the system underwent various power 
demand changes. Initially, the system operated at 
nominal power for 10 seconds, followed by a 180-second 
period of decreasing power demand. Subsequently, the 
system operated at reduced output for 120 seconds before 
returning to nominal power for another 180 seconds, 
completing the scenario. To introduce variability in ramp 
rates, the operation at lower power levels (ranging from 
60% to 80%) was subdivided into increments of 2%. As 
a result, ramp rates varied from 6.66% to 13.33%. Figure 
2 illustrates the simulation scenario. 
 

 
Fig. 2. Various scenarios for load-following operation. 
 

To acquire a wide range of operating data under 
different scenarios, the PI gain values of the control 
valves were varied intentionally. Traditional control 
studies have empirically adjusted PI gains to find optimal 
combinations. However, due to the complex interplay of 
multiple valves in the closed-loop power generation 
system, traditional PID control methods may not be 
optimal. Hence, Table II demonstrates the division of PI 
gain settings for each valve to collect a wide range of 
operating data. The control parameter for all three valves 
were set to the turbine speed. The control strategy was 
based on PI control, with the integral gain set at 10% of 
the proportional gain. The compressor inlet temperature 
control was considered a single-input/single-output 
problem due to its independent control by the mass flow 
rate of the separate cooling water system, thus deemed 
feasible with PID control alone. Therefore, the surrogate 
model developed in this study focuses on the effects of 
three valves: turbine bypass valve (V1), inventory 
discharging valve (V2), and inventory charging valve 
(V3), as shown in Figure 1. Real-time optimal control of 
these three valves will be implemented in future RL 
experiments. In total, data were generated for 6,393 cases 
out of 13,310 possible combinations. Each simulation 
produced 600 seconds of data, resulting in a total of 

3,842,193 data points. With 29 variables recorded every 
second, the input data matrix for supervised learning was 
3,842,193 x 29 in size. Figures 3 to 9 present simulation 
results for several key variables. 
 

Table II. P gain ranges of control valves 
Control valve P gain range Increment 

V1 1-10 1.0 
V2 0-0.5 0.05 
V3 0-0.1 0.01 

 
 

 
Fig. 3. Normalized turbine inlet pressure. 
 

 
Fig. 4. Normalized turbine inlet temperature. 
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Fig. 5. Normalized compressor inlet pressure. 
 

 
Fig. 6. Normalized compressor inlet temperature. 
 

 
Fig. 7. Normalized turbine mass flow rate. 
 

 
Fig. 8. Normalized compressor mass flow rate. 
 

 
Fig. 9. Normalized turbomachinery rotating speed. 
 
2.3 Time series surrogate model 

 
Predictive models for time-series data have been 

developed using the rolling window forecast method. 
The model architecture adopted was a CNN-LSTM 
structure, depicted in Figure 10. This choice was 
motivated by previous studies, which demonstrated its 
superior performance in constructing time-series 
surrogate models [3, 4]. To forecast the next time step, 
the model utilized a window size of three, incorporating 
system information from the preceding three seconds. 
Illustrated in Figure 1, the model employed 25 system 
variables and four control variables (generator torque 
and three control valve stem positions) to predict the 
system's state at the subsequent time step. 

For model evaluation, the dataset was partitioned, 
allocating 70% for training, 20% for validation, and 10% 
for testing. Evaluation was conducted using mean 
absolute error (MAE), as outlined in Equation (1). 
Performance assessment involved varying the number of 
neurons in the CNN-LSTM layer from 32 to 1024, 
doubling in increments. Results, detailed in Table III, 
indicated a decrease in MAE with an increasing number 
of neurons, suggesting enhanced predictive capability. 
However, the reduction in MAE beyond a certain 
threshold was marginal, accompanied by heightened 
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computational complexity. Consequently, a balance 
between computational efficiency and predictive 
accuracy was sought, with 256 neurons deemed optimal. 
At this configuration, the MAE measured 0.0017, 
demonstrating excellent performance, even after 
normalizing all variables within the range of 0 to 1. 
 

MAE =  1
𝑁𝑁
∑ �𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑖𝑖 − 𝑦𝑦𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴,𝑖𝑖�𝑁𝑁
𝑖𝑖=1            Eq. (1)  

 

 
Fig. 10. Structure of the surrogate model 
 

Table III. Test results with different layer sizes 
Number of neurons MAE 
32 0.0030 
64 0.0019 
128 0.0018 
256 0.0017 
512 0.0016 
1024 0.0015 

 
3. Summary and Further Works 

 
In this study, a preliminary investigation was 

conducted into the development of a time-series 
surrogate model for the load-following operation 
scenarios of the sCO2 cooled KAIST-MMR nuclear 
power system. The objective was to create an 
environment suitable for RL-based optimal control. A 
modified version of the MARS code was utilized as the 
system analysis tool, and datasets were generated by 
varying the PI gains of control valves across scenarios 
with diverse ramp rates of power output fluctuations. 
Total of 6,393 simulation data points were employed, 
amounting to 3,842,193 data points. Employing a CNN-
LSTM architecture, a time-series prediction model was 
constructed, and sensitivity analysis on the number of 
neurons was performed. 

This study represents an initial exploration into 
assessing the performance of predictive models 
constructed using load-following operation data for the 
KAIST-MMR. Further research is warranted to refine the 
approach and address remaining challenges. To achieve 
this, the authors plan to expand and refine computational 
scenarios, incorporating a wider range of scenarios to 
enhance the robustness of the surrogate model. 
Additionally, efforts will be made to conduct 
hyperparameter tuning to optimize model performance. 

These steps aim to create a surrogate model that can more 
accurately simulate the behavior of the actual system, 
thereby improving its usefulness for RL-based optimal 
control strategies. 

The developed time-series surrogate model is intended 
to serve as an environment for RL-based optimal control. 
Future research will focus on integrating this model into 
RL frameworks and refining control strategies to 
enhance the performance and adaptability of the KAIST-
MMR nuclear power system in load-following scenarios. 
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