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1. Introduction 

 
Nuclear power plant (NPP) operators should check the 

plant status from indicators such as various sensors and 

alarms. In emergency situations, operators must identify 

rapidly changing NPP parameters, make appropriate 

diagnoses according to procedures, and conduct 

appropriate mitigation actions. However, if inappropriate 

actions are conducted, it can lead to core damage like the 

TMI-2 accident [1]. For this reason, research on human 

error reduction measures is necessary to reduce the 

burden on operators. 

If future trends of NPP key parameters such as 

temperature, pressure, and water level that change due to 

operator actions can be predicted in real-time, it is 

possible to verify appropriate actions and make early 

corrections to inappropriate actions. To predict the trends, 

Bae et al. (2021) implemented deep learning models with 

long short-term memory (LSTM) layers and a multi-

input multi-output (MIMO) strategy [2]. The model 

successfully predicted NPP key parameter trends 

according to operator actions in emergency situations in 

most cases. However, some inaccurate predictions were 

large enough to interfere with the operators’ judgment, 

as presented in Fig.1. 

The current research proposes a methodology that 

prevents significantly erroneous predictions when 

predicting future trends of NPP parameters following 

operator action. To this end, we divided the prediction 

model into two stages: accident trend prediction and 

operator action evaluation. As each stage dedicates to 

impact of accidents and the impact of actions on changes 

in NPP key parameters, respectively, the overall 

prediction accuracy is expected to be enhanced and 

significantly erroneous predictions can be prevented. To 

show feasibility, we compared the proposed two-stage 

model and the MIMO-LSTM model from the previous 

study. 

 

 

2. Methods 

 

In this section, the motivation and framework of the 

proposed two-stage prediction model are described. The 

prediction model is separated into Accident Trend 

Predictor and Operator Action Impact Evaluator.  

 

 

 
Fig. 1.  Significantly erroneous prediction cases of the MIMO-

LSTM model. The real trend is shown as a blue line, and the 

predicted trend is shown as an orange line. The blue area is the 

5% error range band. 
 

2.1 The motivation for model separation 

 

We implemented the MIMO-LSTM model, which 

showed sufficient performance in the previous study, and 

analyzed the causes of prediction failure. Model 

specifications and datasets were identical to the previous 

study. Fig.1 (b) shows the loop 3 cold-leg temperature 

trend in a scenario without operator intervention in a 

60𝑐𝑚2 loss of coolant accident (LOCA) situation. Even 

without operator intervention, the model made a 

significantly inaccurate prediction on the temperature 

trend, which sharply decreases and recovers. Due to the 

black-box property of the artificial neural network, it is 

difficult to determine the cause of such inaccurate 

predictions. However, because it is a supervised 

learning-based model, the cause of prediction failure can 

be found in the training dataset. Among the training 

dataset, we plot loop 3 cold-leg temperatures of scenarios 

in which various operator actions were taken in the 10 - 

50𝑐𝑚2  LOCA situation. Among them, the only scenario 

with a sharply decreasing primary temperature was the 

instance when the operator stopped the RCP under the 

50𝑐𝑚2 LOCA situation, as shown in Fig.2(a). Note that 

despite the LOCA situation with the same operator action, 

the temperature did not decrease rapidly as shown in Fig. 

2(b) when the break size was less than 40𝑐𝑚2.  

For this reason, we assumed that the model predicted 

the rapid decrease in temperature based on the break size. 

Ultimately, such prediction errors may occur because the 

impact of accidents and actions are not clearly 

distinguished. Therefore, we concluded that if we 

separate the model into two stages and train them to 

predict the trends following accidents and actions 

separately, significantly erroneous predictions can be 

prevented. 
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Fig. 2.  Training data analysis to find the cause of the sharp 

decrease in temperature.; (a): 50𝑐𝑚2  LOCA scenario with 

action to stop RCP03; (b): 40𝑐𝑚2 LOCA scenario with action 

to stop RCP03. 
 

2.2 Framework 

 

The proposed model was developed to achieve a clear 

distinction between the effects of the accident and action. 

Therefore, it is necessary to understand where each effect 

is revealed in the data we deal with. When an accident 

occurs as an initiating event, the operator then performs 

an appropriate action. Until the operator action starts, the 

influence of the accident will appear in the data, and the 

impact of the operator action will appear in the data 

between just before the start and just after the completion 

of the action. In this context, the proposed model 

evaluates and combines the effect of the accident/action 

with different inputs for each stage. 

 Fig. 3 illustrates the framework of the proposed two-

stage prediction model. Let t be the time just after the 

completion of the action and let t-1 be the time just before 

the start of the action. Since the N input parameters at the 

time point t-2 and t-1 do not include information from 

the action, the Accident Trend Predictor can draw the 

base trend ([t+1:t+H], M) as much as H time steps of M 

output parameters by assuming that there is no operator 

intervention using input_1 ([t-2, t-1], N). On the other 

hand, since the N input parameters at the time points t-1 

and t contain information changed by the action, 

sufficient information is given to evaluate the action 

impact. The Operator Action Impact Evaluator learns 

both the base trend drawn from input_1 and the action 

impact information obtained from input_2 ([t-1, t], N) to 

predict the future trend ([t+1:t+H], M) reflecting the 

operator action impact. 

 

2.3 Accident Trend Predictor 

 

As previously mentioned, Accident Trend Predictor is 

a module that predicts trends excluding the effects of the 

operator action performed immediately before. In strict 

terms, the Accident Trend Predictor can evaluate not 

only the impact of an accident (initiating event) but also 

the automatic actions by the I&C system and previously 

performed actions in multi-action scenarios. 

Accident Trend Predictor is an independent deep 

learning model, and training data must be organized 

separately. Rather than using all parts of the data 

extracted through the simulator, the time window is 

moved and indexed only in the time area after the final 

action is taken. This work serves to isolate the Accident 

Trend Predictor from learning the impact of additional, 

potential actions after the final action of the training 

scenario. 

This module receives input from a test scenario and 

outputs a base trend that excludes the impact of the final 

action. This base trend then moves on to the next stage 

and is used as additional input for the Operator Action 

Impact Evaluator. 

 

2.4 Operator Action Impact Evaluator 

 

Operator Action Impact Evaluator is another deep 

learning model that evaluates the impact of a test 

scenario's final action on parameter future trends. 

Because plant status data before and after the final action 

of the test scenario is accepted as input_2, the impact is 

evaluated based on the change. 

  The base trend used as another input is received from 

the Accident Trend Predictor. In order to clearly 

distinguish the learning target, the layer of the pre-

trained Accident Trend Predictor is set to untrainable 

during the training of the Operator Action Impact 

Evaluator. 

  The evaluator is trained by reflecting the base trend 

and input_2, and outputs the final future trend of NPP 

parameters. 

 

 
 

Fig. 3. The framework of the proposed two-stage prediction 

model 

 

 

3. Case study 
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We conducted a case study to evaluate the feasibility 

of the proposed two-stage prediction model. The same 

data as the previous study was used, and MIMO-LSTM, 

which achieved the best performance in the comparison 

study in the previous study, and MIMO-MLP (Multilayer 

Perceptron) were compared with the proposed model. To 

implement them, we utilized Python and its libraries 

including Keras API. and TensorFlow [3].  

 

3.1 Description of datasets 

 

Data were acquired from the Compact Nuclear 

Simulator (CNS), a simplified simulator of a 

Westinghouse 1000MWe 3-loop plant [4]. 

Output parameters were 25 parameters illustrated in 

the critical safety function (CSF) tree of CNS emergency 

operating procedures. There are a total of 109 input 

parameters, including 25 output parameters in Table I 

and 84 parameters consisting of valve state, component 

state, instrument values from sensors, and important 

signals. 

Each model predicts future trends for 20 time steps 

with 2 or 3 time steps as input. Since the time interval 

between each time step is 30 seconds, the trends of output 

parameters are predicted for 10 minutes. 

 

Table I: Output parameters from the CNS [2] 

 Plant Parameters (units) 

1 POWER RANGE PERCENT POWER (%) 

2 INTERMEDIATE RANGE START-UP RATE (DPM) 

3 INTERMEDIATE RANGE NEUTRON LEVEL (A) 

4 SOURCE RANGE START-UP RATE (DPM) 

5 CORE OUTLET TEMPERATURE (◦C) 

6 LOOP 1 HOT-LEG TEMPERATURE (◦C) 

7 LOOP 2 HOT-LEG TEMPERATURE (◦C) 

8 LOOP 3 HOT-LEG TEMPERATURE (◦C) 

9 PRESSURIZER PRESSURE (kg/cm2) 

10 STEAM GENERATOR #1 NARROW LEVEL (%) 

11 STEAM GENERATOR #2 NARROW LEVEL (%) 

12 STEAM GENERATOR #3 NARROW LEVEL (%) 

13 FEEDWATER #1 FLOW (m3 /hr) 

14 FEEDWATER #2 FLOW (m3 /hr) 

15 FEEDWATER #3 FLOW (m3 /hr) 

16 STEAM GENERATOR #1 PRESSURE (kg/cm2 ) 

17 STEAM GENERATOR #2 PRESSURE (kg/cm2 ) 

18 STEAM GENERATOR #3 PRESSURE (kg/cm2 ) 

19 LOOP 1 COLD-LEG TEMPERATURE (◦C) 

20 LOOP 2 COLD-LEG TEMPERATURE (◦C) 

21 LOOP 3 COLD-LEG TEMPERATURE (◦C) 

22 CONTAINMENT PRESSURE (kg/cm2 ) 

23 CONTAINMENT SUMP WATER LEVEL (m) 

24 CONTAINMENT RADIATION (mRem/hr) 

25 PRESSURIZER LEVEL (%) 

 

To extract NPP operation data, three accidents were 

assumed: LOCA, a steam generator tube rupture (SGTR), 

and a spurious reactor trip. A total of 1153 operation data 

were obtained by applying operator actions that could 

occur through analysis of each emergency operation 

procedure. All the scenarios outlined in Table II have 

different operator action timing, degree, and correctly 

performed prerequisites. 

 

Table II: Simulated emergency operation scenario [2] 

LOCA  

(865 scenarios) 

Leak of reactor coolant due to  

10 𝑐𝑚2, 20 𝑐𝑚2, 30 𝑐𝑚2, 40 𝑐𝑚2, 

or 50 𝑐𝑚2 break in the cold leg 

Operator 

action 

1. Auxiliary feedwater 

2. flow control 

3. Reactor coolant pump stop 

4. PORV shut-off valve open 

5. PORV open 

6. Safety injection signal reset 

7. Safety injection pump stop 

8. No action 

SGTR 

(200 scenarios) 

Single-tube or double-tube ruptures 

in a steam generator 

Operator 

action 

1. Auxiliary feedwater flow control 

2. PORV shut-off valve open  

3. PORV open Reactor coolant 

 pump stop  

4. Main steam line isolation  

5. Secondary side relief valve 

 manual open  

6. Contaminated steam line 

 isolation  

7. No action 

Spurious Trip 

(98 scenarios) 

Unintended reactor trip due to a 

malfunction of the reactor 

protection system 

Operator 

action 

1. Auxiliary feedwater flow control  

2. PORV shut-off valve open  

3. PORV open Reactor coolant 

 pump stop  

4. No action 

 

3.2 Design of deep-learning models 

 

The architectures of MIMO-MLP and MIMO-LSTM 

for comparison are presented in Table III. The input of 

the Multilayer perceptron (MLP) flattens (2, 109) into 

one dimension and receives (218,), and the MIMO-

LSTM model receives (2, 109) as input. On the other 

hand, the proposed model presented in Fig. 4 receives an 

input in the shape of (3, 109), splits it into two parts, and 

applies it to each module. Although the layers used in 

each module can be used in various ways, the same 

LSTM layers were used to check the differences in the 

model's structural aspect. The shape of the final output is 

both (20, 25), which predicts the same range of parameter 

trends, but the proposed model can additionally output a 

base trend (output_1) assuming there is no operator 

intervention. 

Table III: ANN structures of the 3 models. 
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 ANNs Input 

shape 

Hidden 

layers 

Cells/ 

hidden 

layer 

Output 

shape 

MIMO 

MLP 

25 (218,) 8 200 (20,) 

MIMO 

LSTM 

25 (2,109) 4 100 (20,) 

Proposed 

model 

25 (3,109) 4 100 (20,) 

 

 
Fig. 4. The architecture of the proposed model. Accident 

Trend Predictor is pre-trained and further training is limited. 

 

3.3 Error metrics 

 

We calculated the error between the actual and 

predicted values. Root mean squared error (RMSE), 

mean squared error (MSE), and mean absolute error 

(MAE) were used as error metrics and are defined in Eqs 

(1) to (3), respectively. 

We calculated 20 points for each 25 variables in 35 test 

scenarios, for a total of 17,500 points, and listed them in 

Table IV. The RMSE, MSE, and MAE of the proposed 

model scored the lowest at 0.0158, 0.0003, and 0.0048, 

respectively. 

 

 
 

Table IV: Error metrics of the 3 models. 

 MIMO-MLP MIMO-

LSTM 

Proposed model 

RMSE 0.0866 0.0213 0.0158 

MSE 0.0075 0.0005 0.0003 

MAE 0.0502 0.0061 0.0048 

 

3.4 Trend prediction 

 

Fig 5 is an example of trend prediction. The real trend 

is indicated by a blue solid line, and the predicted value 

is indicated by a red dotted line. The blue shaded area 

represents the 5% error range, and the red shaded area 

represents the 10% error range, obtained from the 

maximum and minimum values of each parameter. 

 
Fig. 5. Example of trend prediction results. 

 

Three success criteria were defined to evaluate each 

predicted trend: The predicted trend is Accurate when all 

points are within the 5% error range. The predicted trend 

is Mostly Accurate when there are a maximum of 3 points 

outside the 5% error range. The predicted trend is 

Acceptable when there are a maximum of 2 points 

outside the 10% error range. 

We evaluated a total of 875 trends in 25 parameters 

across 35 test scenarios and listed them in Table V. For 

all three criteria, the proposed model achieved the 

highest accuracy of 93.60%, 97.71%, and 99.31%, 

respectively. 
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Table V: Percentage of successful trend prediction. 

 MIMO-

MLP 

MIMO-

LSTM 

Proposed 

model 

Accurate 43.54% 91.66% 93.60% 

Mostly 

Accurate 

48.23% 96.57% 97.71% 

Acceptable 73.60% 98.63% 99.31% 

 

In addition to the overall accuracy improvement, 

substantial improvements have been made in the 

proposed model for significantly erroneous prediction 

cases of the MIMO-LSTM model. Fig. 6 shows 

pressurizer level trends predicted by (a) the MIMO-

LSTM model and (b) the proposed model when an 

operator action error that opens the PORV occurs in a 

LOCA situation with a 45𝑐𝑚2 rupture size. Fig. 7 shows 

the prediction of loop 3 cold-leg temperature trends using 

(a) the MIMO-LSTM model and (b) the proposed model 

in a LOCA situation of 60𝑐𝑚2 rupture size. In both cases, 

the MIMO-LSTM model showed errors larger than 30%, 

but the proposed model predicted most points well within 

the 5% error range. These show that the proposed model 

recognizes simulated accident and operator action well 

in test scenarios. 
 

 
Fig. 6. 45𝑐𝑚2 LOCA with PORV action error, pressurizer 

level trends predicted by (a) MIMO-LSTM model and (b) 

Proposed model. 

 

 
Fig. 7. 60𝑐𝑚2 LOCA, loop 3 cold-leg temperature trends 

predicted by (a) MIMO-LSTM model and (b) Proposed 

model. 

 

 

4. Conclusions 

 

Deep learning technology is being used as a useful tool 

to predict NPP parameter trends. In the previous study, a 

model combining the MIMO strategy and LSTM layer 

shows great performance in predicting NPP key 

parameter trends according to operator action. However, 

significantly erroneous prediction cases exist, which may 

interfere with the operator's judgment. As a result of 

training dataset analysis, it was found that the model did 

not distinguish well between the effects of accident and 

action in the input scenarios. 

To solve this problem, we proposed a two-stage trend 

prediction deep-learning model to reduce significantly 

erroneous prediction cases. In the first stage, the 

Accident Trend Predictor reflects the impact of accidents 

on parameter changes by predicting a base trend 

assuming no final operator action is performed. In the 

second stage, the Operator Action Impact Evaluator 

predicted parameter trends by reflecting the final 

operator action information in the base trend received 

from the previous stage. Through a case study, we 

compared the proposed model with MIMO-LSTM and 

MIMO-MLP models and showed that the proposed 

model scored the highest accuracy while preventing 

significantly erroneous prediction cases. 

This model is expected to reduce human errors and 

reduce the operators’ burden by verifying operator 

actions through real-time prediction of NPP key 

parameter trends. Furthermore, by expanding to long-

term predictions, it will be possible to measure the time 

it takes for core damage to occur for each operator action. 

That time can be used as a quantitative action evaluation 

factor, which will become the basis for developing an 

optimal operational action selection model. 
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