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1. Introduction 

 

The single-photon avalanche diode (SPAD) detector 

is widely utilized across various applications such as 

LiDARs, time of flight (ToF) 3D imaging, and positron 

emission tomography (PET) scanning due to its 

exceptional sensitivity, pico-second timing resolution, 

low cost, and low power consumption [1]-[2]. A basic 

SPAD detector cell comprises an avalanche photodiode, 

a quenching and recharging circuit, and a readout 

circuitry. While passive quenching circuits are simple, 

they suffer from slow quenching and recharging, 

limiting the maximum photon-counting rate and 

increasing the afterpulsing probability (AP). To address 

these limitations, active quenching, which rapidly 

lowers the diode bias below breakdown to stop the 

avalanche, was introduced. Active quenching offers 

advantages such as higher maximum photon-counting 

rates, lower afterpulsing probability, and reduced jitter 

of photon arrival time, making it favorable for ToF 

applications. However, active quenching circuits may 

occupy a large area, reducing the fill factor of SPAD 

detector cells. Thus, it is crucial to implement an active 

quenching circuit as compact as possible while 

maintaining quenching performance. The proposed 

detector capacitance compensation (DCC) technique 

aims to enhance active quenching operation without 

significantly increasing power or area requirements 

compared to conventional designs. This paper will 

elaborate on the DCC technique and present simulation 

results of the proposed active quenching circuit. 

 

2. Methods and Results 

 

In this section, the modeling of SPAD, full 

architecture of proposed circuit, simulation result, and 

layout comparison to conventional design are described.  

 

2.1 Detector Model 

 

Basic electrical modeling of SPAD was used to 

provide an input signal for simulation, shown in Fig. 1 

[3]. Breakdown voltage (VBD) is measured to be 15 V. 

RD and CD values are tuned to mimic the output signal 

of SPAD according to the information given by 

previous taped-out chips. All the other design 

parameters are kept equal except for the DCC technique 

for a fair comparison. An ideal voltage source provides 

the high voltage to the CATHODE node through a 

ballast series resistor.  
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Fig. 1. Basic electrical modeling of SPAD for simulation. 

 
2.2 Full Architecture 

 

Fig. 2 shows the full circuit architecture of the 

proposed active quenching circuit. Cadence Virtuoso 

was used to implement and simulate the circuit. We 

employed the conventional active quenching circuit 

from [4] and then merged it with a DCC amplifier. The 

DCC amplifier is implemented as a source-follower 

structure using only two transistors. We reduced the 

number of transistors required to implement a DCC 

amplifier, introduced in [5]. VSPAD+, Vhold_off, and 

RESET signals are biased outside the chip. 
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Fig. 2. Full architecture of the proposed circuit. 
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2.3 Simulation Result 

 

The simulation result is shown in Fig. 3. The 

conventional active quenching circuit takes about 4.55 

ns to reach half VDD, while the proposed active 

quenching circuit takes about 1.59 ns, which is almost 

three times faster. As explained above, the simulation 

result clearly shows that the DCC technique effectively 

boosts the quenching operation until the anode node 

reaches half VDD. 

1.59 ns

4.55 ns

 
Fig. 3. Simulation results of active quenching at node VA (Red 

solid: proposed, blue dashed: conventional). 

 
2.4 Layout Comparison 

 

The chip layout is shown in Fig. 4. The MIM 

capacitor is laid on the top of the active quenching 

circuit, yielding no additional area. Besides the SPAD, 

the circuit width increased by 4.4 μm for the 

implementation of a DCC amplifier. It is only about a 

23 % area increase in total, which is acceptable 

considering about three times better quenching time. 
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Fig. 4. Layout (Left: proposed, right: conventional). 

 
3. Conclusion 

 

SPAD requires fast quenching to achieve a higher 

photon counting rate and minimize jitter and 

afterpulsing probability while maintaining compact 

active quenching size and affordable power 

consumption. In this work, the DCC technique boosting 

double active quenching of SPAD with minimized area 

overhead and low power has been designed in a 0.18 

μm CMOS technology. The simulation results confirm 

almost three times better quenching performance with 

an overhead of a mere 23 % area increase compared to 

the conventional design. When applied in fields where 

quenching performance is important, such as PET, the 

proposed circuit offers a favorable solution. The 

comparison is made between the conventional design 

and the proposed design by employing the same SPAD 

for every circuitry. 
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