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1. Introduction 
 

In Monte Carlo (MC) eigenvalue transport 
calculations, inactive cycles are intended to provide a 
fully-converged fission source distribution (FSD) that is 
a stationary mode. There have been many studies on the 
FSD convergence in MC eigenvalue calculations such as 
Ueki's posterior method [1], Shim's stopping criterion [2], 
Skewness estimation method (SEM), and Kurtosis 
estimation method (KEM) [3]. In the previous studies, it 
is difficult to determine the number of inactive cycles due 
to large statistical fluctuations and noise occurred from 
FSDs. 

In this study, a new methodology to diagnose the 
convergence of FSDs was newly introduced. Firstly, this 
methodology can reduce the statistical noise in the FSD 
by utilizing the Kalman filter [4,5], a type of 
mathematical algorithm that combines Gaussian 
distributions to reduce variance. Secondly, the number of 
inactive cycles can be determined from the number of the 
inflection points that occur during the Kalman filter 
calculations. The concept of inflection points is 
introduced as a way to determine convergence because 
statistical noise is shaped like inflection points. The 
number of inflection-points relative to the number of 
calculated samples must reach a certain criterion, ε, for 
convergence. To determine ε, which is used as the 
convergence criteria, the inflection point calculations 
with the Kalman filter on several benchmarks with 
various dominance ratios (DRs) are conducted. Finally, 
we established a formula to find the convergence criteria 
as a function of a DR. Using the Kalman filter and 
inflection points, we proposed an effective online 
methodology called as the Inflection-Kalman combined 
method (IKCM), designed to accurately diagnose 
convergences.  
 

2. Methodology 
 
2.1. Kalman Filter Algorithm 
 

In the Kalman filter algorithm, the prediction and 
measurement functions are combined using Gaussian 
distribution. Figure 1 shows the overview of the Kalman 
filter algorithm. The characteristics of the Kalman filter 
is used to reduce the statistical noise in the FSDs. As 
shown in Figure 2, the Kalman filter algorithm iteratively 

updates the measured and predicted values to estimate 
the optimal value. In this study, the McCARD [6] MC 
code consistently measures FSD values cycle by cycle. 
All McCARD calculations are performed using 100,000 
neutron particles per a cycle and 10,000 cycles. 

 

 
Figure 1. Overview of Kalman Filter Algorithm 

 
 

 
Figure 2. Structure of Kalman Filter Algorithm 

 
 

 

Figure 3. Example of measured and predicted model 
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Figure 3 demonstrates the principle of the Kalman 

filter using a car as an example. If the car has a 
rangefinder, it can measure the distance moved 
(measured value), that is 𝐷௘௫  as it moves over a period of 
time. Also, we can mathematically calculate 𝐷෡௘௫ 
(predicted value) simply by looking at the current 
position of the car and how far the car moves at the end, 
given its speed. The values of  𝐷௘௫ and 𝐷෡௘௫ may differ 
due to the presence of noise and uncertainty in the 
mathematical model. However, when corrected by the 
Kalman filter, it converges to the real system (i.e., 𝐷௘௫  = 
𝐷෡௘௫ ).  In this simple car problem, delta T is 1 second, 
and in case of the eigenvalue problem, delta T is 1 cycle. 
 
 
2.2. Inflection-Kalman Combined Method (IKCM) 

 

 
Figure 4. Example of cycle-wise cumulative FSD fraction 
 
In a common MC eigenvalue problem, it is observed 

that there is a significant amount of fluctuation and noise 
in the FSD values, even when its convergence is 
achieved. It is noted that the oscillations between upward 
and downward movements in FSDs can be characterized 
as inflection points. The IKCM can be used as a 
convergence criterion when the number of inflection 
points rises above a predetermined threshold 𝜀, as shown 
in Eq. (1), where 𝜀 is determined by DR.  
 

ேಮ

௅ౡ౜
≥ 𝜀 (DR),   …. (1) 

 
where Lkf is the interval or length for Kalman filter 
calculations and N∞ is the number of inflection points 
occurred during N cycles. The Kalman filter identifies 
convergence cycles by tallying the number of inflection 
points observed across the performed sample cycles.   
 

 

Figure 5. Convergence diagnosis with Inflection-Kalman 
combined Method 

2.3. Determination of convergence criteria (𝜀) 
 

In this section, a number of inflection points at the 
converged cycle was observed to determine a 
convergence criterion, 𝜀, for various benchmark problem. 
To cover for a wide range of problems, these test 
problems were performed on the problems ranging from 
high DR to low DR.  
 
2.3.1 1D Slab Problem with Intermediate DR 
 

A 1D slab problem was selected for the determination 
of convergence criteria for problems with intermediate 
range DR. The 1D slab composes of the volume-
equivalent 10 cells with the reflective boundary 
condition as shown in Figure 6. For 1D slab problem, its 
DR is about 0.918.  It converges when the normalized 
FSD of each region has a ratio of 0.1, which is the 40th 
cycle. Firstly, after 1000 FSDs are accumulated, the 
Kalman filter performs online to remove noise. The next 
step is to count the number of inflection points occurred 
in the Kalman filtered 1000 samples (cycles). This study 
groups 1000 samples and defines them as one cycle set. 

The number of inflection points occurring in a certain 
cycle interval was recorded by the IKCM method, and 
the number of inflection points increased as shown in 
Table I, and then stopped increasing beyond a certain 
number. We already know that the FSDs also converged 
at the 40th cycle from the other studies and the 
observation of FSDs. Therefore, 𝜀 becomes about 0.2. 
 

 

Figure 6. Vertical cross section of the 1D slab problem 
 

Table I: Inflection points at each cycle (1D-slab) 

 

 
2.3.2 KRITZ-2 with Low DR 
 

The KRITZ-2 [7] reactor, operated in Sweden in the 
70s, consists of a light water rectangular lattice and UO2 

and MOX fuel rods, and has a low DR problem of about 
0.66. Figure 7 shows the cycle-wise cumulative FSDs 
before applying the Kalman filter for KRITZ-2 
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benchmark. In both converged and un-converged cycles, 
a significant number of inflection points can be observed. 
Thus, it is difficult for us to determine convergence 
solely based on the number of inflection points. Figure 8 
shows the cycle-wise cumulative FSDs after applying the 
Kalman filter. Applying the Kalman filter to FSDs, as 
shown in Figure 9, the early cycles are not well predicted 
due to the initial slope and the number of inflection 
points is relatively small. However, as the cycle proceeds, 
the statistical noise is reduced and the predictions are 
well estimated, similar to the measurements. 
 

 

Figure 7. Cycle-wise cumulative FSD fraction before 
applying the Kalman filter for KRTIZ-2 

 

 

Figure 8. Cycle-wise cumulative FSD fraction after  
applying the Kalman filter for KRTIZ-2 

 
In the KRITZ benchmark having low DR, we have 
established a criterion value of 0.26  based on the number 
of inflection points at the converged cycle.  
 

 

Figure 9. FSD fraction of BOX2 at 1st and 30th cycle  
with the Inflection-Kalman combined method (IKCM) 

2.3.3 OECD/NEA Slow Convergence Benchmark 
Problems with High DR 
 

In this study, two benchmark problems having high 
DR are considered from the OECD/NEA slow 
convergence benchmark. Problem 1 is a checkerboard 
storage of assemblies and Problem 2 is an array of pin 
cells with irradiated fuel. Detailed modeling and results 
for each benchmark problem can be found in reference 
[8]. The DR for Problems 1 and 2 are 0.997 and 0.976, 
respectively. 

 

 

Figure 10. Checkerboard storage of assemblies (Prob.1) 

 
In Problem 1, the FSD is biased towards the upper left 

corner and converges, as shown in Figure 11. Therefore, 
when the FUEL1_1 region converges, the other regions 
are already converged.  After applying the Kalman filter, 
the first step of the IKCM, the predicted values gradually 
follow the measured values, as shown in Table Ⅱ. The 
second step of the IKCM, the number of inflection points, 
was analyzed and 𝜀 was found to be 0.055. Figure 14 
shows the configuration of the pin-cell array with 
irradiated fuel for Problem 2. In the same manner, in the 
problem 2, 𝜀 was found to be 0.05.  
 
 

 
Figure 11. Fission distribution after FSD convergence 

 
 

 
Figure 12. Cycle-wise cumulative FSD fraction before and 

after applying the Kalman filter of Prob.1 
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Table Ⅱ. Calculation of Kalman filter applying for FUEL1_1 

FUEL1_1 
1~1000 cycle 
= 1 cycle set 

50 cycle set 100 cycle set 

   

200 cycle set 300 cycle set 400 cycle set 

   

450 cycle set 500 cycle set 600 cycle set 

   

700 cycle set 800 cycle set 1000 cycle set 

   

 
 

 

Figure 13. Using the IKCM in Prob.1 
 
 

 

Figure 14. Pin-cell array with irradiated fuel (Prob.2) 
 
 

3. Validation of the Inflection-Kalman filter 
Combine Method. 

 
3.1. Results 
 

As mentioned in the previous section, the Kalman 
filter was used to reduce the noise in the FSD values 
calculated by McCARD. In the IKCM, one can diagnose 
convergence when the inflection point is above a certain 
convergence criterion 𝜀. In the previous section, we 
determined the convergence criterion 𝜀 for the problems 

ranged from high DR to low DR. Accordingly, the 
equations obtained for the approaching convergence 
diagnosis are Eqs. (2) ~ (4).  
 
 

High DR: 
ே౟౤౜ౢ౛ౙ౪౟౥౤ ౦౥౟౤౪ ౤౫ౣౘ౛౨

௅ౡ౗ౢౣ౗౤ ౜౟ౢ౪౛౨ ౙ౗ౢౙ౫ౢ౗౪౟౥౤౩
≥ 0.05      … (2) 

 
 

Intermediate DR: 
ே౟౤౜ౢ౛ౙ౪౟౥౤ ౦౥౟౤౪ ౤౫ౣౘ౛౨

௅ౡ౗ౢౣ౗౤ ౜౟ౢ౪౛౨ ౙ౗ౢౙ౫ౢ౗౪౟౥౤౩
≥ 0.20  … (3) 

 
 

Low DR: 
ே౟౤౜ౢ౛ౙ౪౟౥౤ ౦౥౟౤౪ ౤౫ౣౘ౛౨

௅ౡ౗ౢౣ౗౤ ౜౟ౢ౪౛౨ ౙ౗ౢౙ౫ౢ౗౪౟౥౤౩
≥ 0.30     … (4) 

 
 

As shown in Table Ⅲ, the 𝜀 as a function of DRs was 
determined. Based on these results, we derived Eq. (5) to 
cover various problems [7,8,9] by interpolation and 
extrapolation. This equation provides 𝜀 for determining 
the fission convergence cycle and can be derived for any 
DR and applied to benchmarks in a broad neutron energy 
spectrum. 

 
ε = 0.0485 ln(DR) + 0.3002  … (5) 

 
 

Table Ⅲ: Epsilon Derivation with DR 

 
 
 

 

Figure 15. Convergence criterion values determined by DR 
and the function curve 
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3.2. Validation of the IKCM 
 

To validate IKCM, we compared it to previous studied 
FSD convergence diagnosis methods. In the 1D slab 
problem, the IKCM converged at the 40th cycle. The 
following results are similar to those diagnosed by the 
Ueki’s posterior method, the SEM and the KEM [3,10]. 
In Problem 1 of the OECD/NEA slow convergence 
benchmark, the IKCM converged at the 1000th cycle, 
which falls between the reference convergence cycle 
value and another method. In Problem 2, the IKCM 
showed a similar convergence cycle to the SEM and 
KEM methods. It was noted that the IKCM reliably and 
accurately diagnosed the convergence cycle of the FSDs 
for even high DR benchmarks. 
 
Table Ⅳ: Convergence cycle results for the 1D Slab problem 

 
 

Table Ⅴ: Convergence cycle results for OECD/NEA Slow 
Convergence Benchmarks 

 

 
4. Conclusion 

 
This study introduces the inflection-Kalman combined 

method (IKCM). The IKCM can remove the severe noise 
of FSDs using the Kalman filter. The number of 
inflection points from the Kalman filtered FSDs can be 
used to diagnose the convergence cycle smoothly. The 
principle of the IKCM is that the number of inflection 
points increases as the FSDs are converged. To 
determine the convergence criteria, 𝜺, the equation as a 
function of DR was made up by performing several 
practical problems having various DR. Accordingly, the 
benchmark problems are performed: 1D slab Problem, 
AGN-201K, KRITZ-2:19, and OECD/NEA slow 
convergence benchmark. To validate the IKCM, we 
compared the calculated convergence cycles with those 

by the different methodologies. It was noted that the 
convergence or inactive cycles determined by the IKCM 
are comparable and reasonable to the other 
methodologies. Moreover, it was confirmed that the 
IKCM has the advantages in terms of the user 
convenience and the computation time. Therefore, the 
IKCM can be utilized as a practical and noble method for 
diagnosing the convergence of FSDs in various MC 
analyses.  

However there is still a need for perform more 
calculations based on the number of neutrons per cycle 
to improve the DR function equation. The McCARD 
calculation was performed with 100,000 neutron 
particles per cycle, and as the number of neutrons per 
cycle is reduced, the statistical noise becomes more 
significant. The statistical noise is identified as inflection 
points and can impact diagnosis convergence by 
increases Lkf  in Equation 1. 
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