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1. Introduction 

 
The growing capability of the Artificial Intelligence 

(AI) has drawn attention to application of neural 
networks in various fields. [1] Among numerous types of 
AI, Physics Informed Neural Networks (PINNs) is one 
of the neural networks that has recently grabbed attention. 
[2,3] The concept of PINN was first suggested by M. 
Raissi in 2019 for the neural networks that incorporate 
physical governing equation as a loss function, thereby 
improving the performance of the neural network with 
only a few provided data.[4]  

PINN is applied in a wide range of studies such as fluid 
mechanics, chemical engineering, and bio-medics to 
name a few. [2,5] The concept of PINN is explained in 
figure 1. An ordinary neural network calculates the loss 
function from the difference between the obtained data 
and desired data. In such cases, providing more data 
allows model to train itself more, resulting in higher 
accuracy. Unlike any ordinary neural network, PINN 
utilizes equation loss for training the model. Therefore 
PINN demonstrates its strength in the field where the 
data acquisition is limited. The insufficient amount of 
data is fulfilled with governing equation as a loss 
function. PINNs is able to make precise predictions with 
relatively small amount of information. [3,6] 
  

Fig. 1. The basic diagram for PINNs: Neural Network with 
governing equation as a loss function. 

 
In the field of nuclear power plants, PINNs hold great 

promise in solving thermal-hydraulic phenomena. 

Several studies have been conducted in application of 
PINNs to the nuclear reactor behavior [7] or the 
simulation of the accidents. [8] With the effort to bridge 
the bond between the AI and MELCOR, this study 
demonstrates the capability of calculating the mass flow 
of the water in the six tanks with Python based code. The 
developed model utilizes functional based programming. 
The goal of this study is to analyze the validation of 
applying governing equation to the code thereby 
suggesting the possibility of application of PINN to 
MELCOR. The effect of the governing equation is to be 
analyzed and the sensitivity of each factor is discussed. 

 
 

2. Methodology 
 

2.1. Scenario Description 
 

Figure 2 shows the modeling of the scenario. All the 
control volumes (CVs) have the height of 2 m and area 
of 50 m2, aligned with the elevation difference of 1.8 m. 
The CVs are connected with the 0.1 m length and 0.1 m 
radius of pipe at the bottom or top of the tanks. Initially 
the highest tank (CV01) is filled with water, the rest of 
the tanks are empty. CVs are connected with the 
atmosphere on the top, thereby reduce the effects of the 
pressure difference. As the simulation starts, the water 
naturally flows downward due to gravitational force.  

Fig. 2. The modeling of the scenario, 6 water tanks with 5 
flow paths where only CV01 water tank is filled. 
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2.2. Calculation  
 

MELCOR’s governing equations have been adopted 
to calculate the mass and velocity of the water flow 
within the tanks. [9] The velocity is calculated through 
the following equation. 

 
Equation (1) is an alternate form of Navier-Stokes 

equation which is acceleration equation for fluid in the 
flow path. The equation brings out the velocity term by 
taking integral on both sides. Equation (2) is the result of 
the integration on equation (1). 

 

The nomenclature for each of the variable is described 
in Table I. 

 
Table I: Nomenclature of the equation 

Variable Meaning 
𝑣,ఝ

  New velocity (from iteration) 
𝑣,ఝ

ା Old velocity  
𝜑 Phase (liquid, air, solid) 
𝜌   Density  
𝐿 Inertial length of the pipe 

𝛥𝑧 Height of the water 
𝐾∗ ,ఝ Net form- and wall- loss coefficient  

𝑓ଶ, Momentum exchange coefficient 
𝐿ଶ, Effective length over the interphase force 
𝑣,ఝ

ᇱ  Tangent linearization 
𝑣,ఝ

ି 𝑣,ఝ
  old value inside the iteration 

 
Each term is explained in Table II. 
 

Table II: Velocity terms Description 

No. Term Explanation 

1 𝑃
 − 𝑃

 Pressure difference  

2 𝛥𝑃 Pump head pressure 

3 (𝜌𝑔𝛥𝑧),ఝ
  Static head  

4 𝑣,ఝ
 (𝜌𝛥𝑣),ఝ

  Advection of momentum 

5 
𝐾,ఝ

∗ 𝛥𝑡

2𝐿

 
Net form- and wall-loss 
coefficient 

6 
𝛼,ିఝ𝑓ଶ,𝐿ଶ,𝛥𝑡

𝜌,ఝ𝐿
 

Interphase force coefficient 
(momentum exchange) 

 
 

 
 
 
 
 
 
 
 
 

 
 

The calculation for the new velocity term in frictional 
loss and momentum exchange terms is done explicitly. 
The pressure and advection of momentum terms are 
calculated implicitly. From the equation (2) and table I, 
shows that the velocity is calculated semi-implicitly. Due 
to the form and wall loss term, the internal iteration must 
be considered. [9] The iteration is explained in figure 3 
and the logic is embodied in developed model to 
calculate the new velocity. When the water level of 
CV05 and CV06 meet, the calculation is terminated.  
 
 

3. Results and Discussion 
 
3.1. Water flow rate  
 

Figure 4 present the result of the MELCOR 
calculation flow rate of water through each flow path 1 
to 5. From the calculation with the equation (2), the result 
of the python calculation is demonstrated in Figure 4. 

 
Fig. 4. Output of the calculation from MELCOR for the water 
flow rate for the flow path pipe. 

 
Fig. 5. Output of the calculation from developed model for the 
water flow rate for the flow path pipe 
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(2) 

Fig. 3. Iterations of the velocity calculation 
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Table III: Errors analysis for velocity 

 
Table III shows the error between the two-calculation 

method. The error methods, Mean Absolute Error (MAE) 
and Mean Squared Error (MSE) is calculated by the 
following equation. 

 

𝑀𝐴𝐸 =
1

𝑛
 |𝑦 − 𝑦ො|



 (3) 

𝑀𝑆𝐸 =
1

𝑛
(𝑦 − 𝑦ො)ଶ



 (4) 

The MAE and MSE are widely used to suggest the 
indicator of the error. The developed model for the mass 
flow calculation shows high accuracy to the value 
obtained from MELCOR.  

 
3.2. Liquid Level  

 
The level of liquid is obtained from the velocity, by 

calculating the amount of flowing in and flowing out. 
Due to the gravitational force acting on the water, CV01 
through CV 05 acts as a donor, having the mass flowing 
out. As the five water tanks bring out the mass, CV02 to 
CV06 are receivers, so the mass flowing in needs to be 
considered. The following figures show the following 
liquid level behavior. 

 
Fig.5. Output of the calculation from MELCOR for the water 

level in Control Volumes 

 
Fig. 6. Result of the calculation from developed model for the 

water level in Control Volumes 

Table IV: Errors analysis for liquid level 

 
 

3.3. Sensitivity of the factors  
 

Velocity terms in Table II are analyzed. The 
conditions and the chosen coefficient for the analysis is 
described in table V. For the analysis, flow rate through 
FL02 was chosen. 

 
Table V: Velocity terms and description for variable selection 

No. Term Description 

1 𝑃
 − 𝑃

: Set to be equal for this model 

2 𝛥𝑃: Not regarded in this scenario 

3 (𝜌𝑔𝛥𝑧),ఝ
 : Calculates the velocity out. No 

variation is valid. 

4 𝑣,ఝ
 (𝜌𝛥𝑣),ఝ

 : 
Calculates the velocity 
difference in FL. Not regarded 
in this study. 

5 
ೕ,ക

∗ ௱௧

ଶೕ
 : 

Regarded coefficient for 
variation 

6 
ఈೕ,షകమ,ೕమ,ೕ௱௧

ఘೕ,കೕ
: Regarded coefficient for 

variation 

 

 
 Fig. 7. Result of velocity for four cases. 

 
Fig. 8. Output of the calculation in height in four cases 

 
Figure 7 and 8 demonstrates the water velocity and 

height of four different cases. The cases include the 
calculation of MELCOR, developed model, developed 
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model without coefficient K (number 5 of Table V), and 
developed model without coefficient f (number 6 of 
Table V). The result shows that velocity term heavily 
relies on K value which is the wall loss or form loss 
coefficient. Without the K value given, the calculation 
ends within 19 iteration and the value of the velocity 
reach over 437m/s. Due to fast flow out rate, the height 
of the water remaining also run out within a short period 
of time. From Fig. 7 and 8, the result of MELCOR 
calculation, Python calculation, and model calculation 
without f are overlapped both in velocity and height, the 
coefficient f does not give impact on the velocity nor the 
height of the model calculation. From Table V, term 
number 4 is not regarded in this study due to the trivial 
difference for the front and back of the flow path. 
 

 
3.4. Computation time  
 

Time consumption is one of the most important factors 
to evaluate the performance of the modeling. The 
calculation cost for the MELCOR and developed model 
is shown in Table VI. 
 
Table VI: Time cost of the two calculation methods 

Method MELCOR Developed model 
Time(s) 0.6875 0.16451 
 
The developed model’s time spent for calculating is 17 

times less than running with MELCOR. This is due to the 
simplified model developed through python. To be more 
specific, when MELCOR runs calculation, it takes the 
energy, temperatures, and other terms into account. 
Whereas for the developed model in this case scenario, 
only the mass and the momentum are regarded. Such 
difference brings faster calculation in developed model. 

 
 

4. Conclusions 
 
In this study, preliminary analysis of PINN 

applicability to MELCOR was analyzed. Governing 
equation takes big portions in PINN hence the physics 
equation from the MELCOR manual was adopted. With 
the code generated from Python, the comparison between 
the two could be obtained. The followings are the key 
findings and the future works. 

 
(1) By constructing model with the main governing 

equation, the possibility of developing model to 
the PINN was assessed. 

(2) With certain boundary conditions and initial 
conditions, MELCOR code can be simulated with 
PINN. 

(3) For the future work, composing a MELCOR 
governing equation based neural network and 
running the system code to train the model is 
expected. 
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