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1. Introduction 

 

Many devices and systems within nuclear power 

plants provide operators with data on the current state. 

However, assessing the current data of a nuclear power 

plant based on numerous variables can be burdensome. 

Moreover, misjudging the plant's data can lead to 

significant economic losses. This paper aims to address 

this issue by employing machine learning. Specifically, 

we utilize eXtreme Gradient Boosting (XGBoost) and 

Light Gradient Boosting Machine (LightGBM), known 

for their robust performance. 
XGBoost and LightGBM are machine learning models 

based on the gradient boosting decision tree method with 

excellent performance. XGBoost is a powerful machine 

learning technique that won first place in the machine 

learning competition platform called Kaggle [1], and 

LightGBM is a machine learning technique that can 

quickly learn numerous data. 

This paper develops a determination model of 

abnormal status in nuclear power plants using XGBoost 

and LightGBM, optimizes it, and compares the two 

models.  
 

2. Methodology 

 

2.1. Machine Learning Model 

 

The gradient boosting decision tree (GBDT) method 

is an algorithm method that applies boosting, one of the 

methods of ensemble learning, to combine multiple weak 

classifiers based on a tree into a strong classifier with 

high prediction performance. Boosting is characterized 

by weighting the data according to the prediction result 

of the first classifier, and the weighted data affects the 

learning of the next classifier. It also aims to reduce the 

residual between the actual and predicted values. 

XGBoost is an update of the existing GBDT method, 

efficiently predicting values using minimal resources 

even for large amounts of data. Unlike the traditional 

GBDT method, XGBoost sets weights based on the 

complexity of the model, resulting in faster and more 

accurate learning than the existing method [1]. 

The existing GBDT method has a problem in that it 

takes a long time to learn when there is a large amount of 
data for high-dimensional variables. LightGBM was 

developed to address this challenge [2]. Unlike the level-

wise tree growth strategy of the existing GBDT, 

LightGBM uses a leaf-wise tree growth strategy. The 

level-wise tree growth strategy prioritizes nodes close to 

the root node to make the tree balanced, while the leaf-

wise tree growth strategy splits at the node with the 

largest loss change and grows unbalanced. The leaf-wise 

method is faster to learn than the level-wise method; 

however, it is prone to overfitting when the data is small 

[3]. 

 

2.2. Hypterparameter 

 

XGBoost and LightGBM have hyperparameters that 
allow the user to influence the model’s performance. 

Table 1 and Table 2 show the hyperparameters we use 

for both models [4,5]. 

 
Table 1. XGBoost hyperparameters and description 

Hyperparameters Description 

eta Boosting learning rate 

n_estimators Number of gradient boosted trees 

max_depth 
Maximum tree depth for base 

learners 

min_child_weight 

Minimum loss reduction 

required to make a further 

partition on a leaf node of the tree 

subsample 
Subsample ratio of the training 

instance 

colsample_bytree 
Subsample ratio of columns 

when constructing each tree 

objective 

Specify the learning task and the 

corresponding learning objective 

or a custom objective function to 

be used 

 
Table 2. LightGBM hyperparameters and description 

Hyperparameters Description 

learning_rate Boosting learning rate 

num_leaves 
Maximum tree leaves for base 

learners 

n_estimator Number of boosted trees to fit 

max_depth 
Maximum tree depth for base 

learners 

min_child_weight 
Minimum sum of instance 

weight 

subsample 
Subsample ratio of the training 
instance 
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colsample_bytree 
Subsample ratio of columns 

when constructing each tree 

objective 

Specify the learning task and the 
corresponding learning objective 

or a custom objective function to 

be used 

 

2.3. Optimization Method [6] 

 

To optimize the hyperparameters of the two models, 

we use the simulated annealing (SA) method. The 

process of slowly cooling a heated alloy is called 

annealing, during which the atoms gradually settle into 

lower energy levels as they cool. SA is an optimization 

technique that simulates this process to find the global 
minima. 

The main process of the SA method in this paper is as 

follows: First, we set the initial temperature and 

randomly train the model (𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ) using the initial 

hyperparameters. Second, we train a new model (𝑛𝑒𝑤) 

by randomly selecting values near the initial 

hyperparameters. Third, we compare the performance of 

the two models using the cost function 𝐽 . Fourth, by 

default, we save a model with good performance as the 
current one; however, we save a model with poor 

performance at a specific probability as the current. 

Equation (1) shows this probability, where 𝑇 represents 

the current temperature. Fifth, the current temperature is 

multiplied by the cooling rate. Sixth, we compare the 

current temperature to the end temperature. If the current 

temperature is higher, we repeat steps 2-6; otherwise, the 

process ends. 

(1) 𝑃 = 𝑒
𝐽(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)−𝐽(𝑛𝑒𝑤)

𝑇  

 
2.4. Cost Function 
 

We use log loss function to evaluate the models. Log 

loss function is a typical cost function used to evaluate 

the performance of models in multiclassification 

problems. Equation (2) is the log loss function. 

(2) 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑛,𝑚 log(𝑝𝑛,𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

 

𝑁  is the total number of test data, 𝑀  is the total 

number of labels, 𝑦𝑛,𝑚  is the answer probability, and 

𝑝𝑛,𝑚 is the prediction value. The closer the log loss value 

is to 0, the better the model predicts [7]. 

 
2.5. Data [7] 
 

This paper uses the data presented in ref. [7]. The 

training data consists of actual abnormal operation and 

simulation data based on operating nuclear power plant. 

The simulation data is not identical to the actual data, but 

the trends are similar, making it suitable for training data. 

As for the data features, 21 out of the 82 abnormal 

statuses are simulated, and then the 21 abnormal statuses 

are divided into 198 cases. Each data contains 5,121 

variables, with a total of 827 data available. These 

variables were obtained for 10 minutes at 1-second 

intervals. Data are assumed to be normal until a specific 

time but in an abnormal state afterward. This paper 

assumes a specific time of 10 seconds. 

 

3. Experiment 

 

For training the two models, we separate the 827 data 

in ref. [7] into 582 training data, 145 validation data, and 

100 test data. Then we train the models and optimise the 

models with the SA method. When using the SA method, 

we set the initial temperature to 1,000, the limit 

temperature to 1, and the cooling rate to 0.9. In addition, 

cost is the cost function value of the model obtained 

using test data. 

Fig. 1 shows the entire training process of the models. 

 

 
Fig. 1. Entire training process 

 

When training both models, we used the early 

stopping. Early stopping is a feature that stops training if 

the performance of the model does not improve. It 

prevents the model from overfitting. In this training, we 
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set it to stop if the performance does not improve for 50 
epochs. 

 

4. Result and Discussion 

 

Fig. 2 and Fig. 3 are the learning curves of the two 

models. XGBoost has a training score of 0.0421 and a 

validation score of 0.6845. LightGBM has a training 

score of 0.2335 and a validation score of 0.6133. 

 

 
Fig. 2. XGBoost learning curves 

 

 
Fig. 3. LightGBM learning curves 

 

Table 3 shows the optimized parameters obtained by 

SA. Table 4 shows the log loss and training time of the 

two optimized models. We use test data for log loss. 

 
Table 3. Optimized hyperparameters 

Hyperparameters XGBoost LightGBM 

learning_rate(eta) 0.646495 0.193919 

num_leaves - 400 

n_estimator 300 300 

max_depth 7 -1 

min_child_weight 4 8 

subsample 0.462069 0.465144 

colsample_bytree 0.709519 0.634746 

objective softprob multiclass 

 
Table 4. Performance evaluation result 

Model Log loss score 
Training time 

(second) 

XGBoost 0.292732 2,336 

LightGBM 0.272960 141 

 

Comparing the log loss values in Table 4, we see that 

LightGBM performs better than XGBoost. Also, 

comparing the training time, we see that LightGBM is 

significantly faster than XGBoost. This is related to the 

size of the training data. 

Multiplying the number of driving variables by the 

measurement time and the number of data files is the size 

of the training data. According to the calculation, both 

models were trained with 1,788,253,200 variables. For 

this reason, we see that LightGBM, which has the 

advantage of fast training even with a large data size, 

trained faster than XGBoost. 

 

5. Conclusion 

 

In this paper, we compared XGBoost and LightGBM 

using abnormal condition data from a nuclear power 

plant. The results showed that the performance of the two 

models was similar, but the training time was 

significantly different due to the size of the training data. 

This indicates that LightGBM is more efficient than 

XGBoost in identifying abnormalities in nuclear power 

plants with many data.  

However, there is a limitation in that we could not 

compare the learning results for all abnormalities 

because we used only 21 of the 82 abnormalities in this 

study, and the number of data files is 827. Also, since we 

used a combination of real and simulated data, there may 

be differences when evaluating only real data. Also, 

since we optimized only a limited number of hyper-

parameters for both models, there may be differences in 

performance. 

To overcome these limitations, we plan to add more 

hyperparameters to the two models to see if their 
performance improves and to compare them with other 

machine learning models. 
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