
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

Comparison between XGBoost and LightGBM

Using Abnormal Data in a Nuclear Power Plant

Jeong-Mu Eun, Moon-Ghu Park, Jae-Yong Lee*
Dept. of Quantum & Nuclear Engineering, Sejong Univ., 209 Neungdong-rok Gwangjin-gu, Seoul, Republic of Korea

*Corresponding author: jylee002@sejong.ac.kr

*Keywords : Machine Learning, Abnormal Data, XGBoost, LightGBM

1. Introduction

Many devices and systems within nuclear power

plants provide operators with data on the current state.

However, assessing the current data of a nuclear power

plant based on numerous variables can be burdensome.

Moreover, misjudging the plant's data can lead to

significant economic losses. This paper aims to address

this issue by employing machine learning. Specifically,

we utilize eXtreme Gradient Boosting (XGBoost) and

Light Gradient Boosting Machine (LightGBM), known

for their robust performance.
XGBoost and LightGBM are machine learning models

based on the gradient boosting decision tree method with

excellent performance. XGBoost is a powerful machine

learning technique that won first place in the machine

learning competition platform called Kaggle [1], and

LightGBM is a machine learning technique that can

quickly learn numerous data.

This paper develops a determination model of

abnormal status in nuclear power plants using XGBoost

and LightGBM, optimizes it, and compares the two

models.

2. Methodology

2.1. Machine Learning Model

The gradient boosting decision tree (GBDT) method

is an algorithm method that applies boosting, one of the

methods of ensemble learning, to combine multiple weak

classifiers based on a tree into a strong classifier with

high prediction performance. Boosting is characterized

by weighting the data according to the prediction result

of the first classifier, and the weighted data affects the

learning of the next classifier. It also aims to reduce the

residual between the actual and predicted values.

XGBoost is an update of the existing GBDT method,

efficiently predicting values using minimal resources

even for large amounts of data. Unlike the traditional

GBDT method, XGBoost sets weights based on the

complexity of the model, resulting in faster and more

accurate learning than the existing method [1].

The existing GBDT method has a problem in that it

takes a long time to learn when there is a large amount of
data for high-dimensional variables. LightGBM was

developed to address this challenge [2]. Unlike the level-

wise tree growth strategy of the existing GBDT,

LightGBM uses a leaf-wise tree growth strategy. The

level-wise tree growth strategy prioritizes nodes close to

the root node to make the tree balanced, while the leaf-

wise tree growth strategy splits at the node with the

largest loss change and grows unbalanced. The leaf-wise

method is faster to learn than the level-wise method;

however, it is prone to overfitting when the data is small

[3].

2.2. Hypterparameter

XGBoost and LightGBM have hyperparameters that
allow the user to influence the model’s performance.

Table 1 and Table 2 show the hyperparameters we use

for both models [4,5].

Table 1. XGBoost hyperparameters and description

Hyperparameters Description

eta Boosting learning rate

n_estimators Number of gradient boosted trees

max_depth
Maximum tree depth for base

learners

min_child_weight

Minimum loss reduction

required to make a further

partition on a leaf node of the tree

subsample
Subsample ratio of the training

instance

colsample_bytree
Subsample ratio of columns

when constructing each tree

objective

Specify the learning task and the

corresponding learning objective

or a custom objective function to

be used

Table 2. LightGBM hyperparameters and description

Hyperparameters Description

learning_rate Boosting learning rate

num_leaves
Maximum tree leaves for base

learners

n_estimator Number of boosted trees to fit

max_depth
Maximum tree depth for base

learners

min_child_weight
Minimum sum of instance

weight

subsample
Subsample ratio of the training
instance

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

colsample_bytree
Subsample ratio of columns

when constructing each tree

objective

Specify the learning task and the
corresponding learning objective

or a custom objective function to

be used

2.3. Optimization Method [6]

To optimize the hyperparameters of the two models,

we use the simulated annealing (SA) method. The

process of slowly cooling a heated alloy is called

annealing, during which the atoms gradually settle into

lower energy levels as they cool. SA is an optimization

technique that simulates this process to find the global
minima.

The main process of the SA method in this paper is as

follows: First, we set the initial temperature and

randomly train the model (𝑐𝑢𝑟𝑟𝑒𝑛𝑡) using the initial

hyperparameters. Second, we train a new model (𝑛𝑒𝑤)

by randomly selecting values near the initial

hyperparameters. Third, we compare the performance of

the two models using the cost function 𝐽 . Fourth, by

default, we save a model with good performance as the
current one; however, we save a model with poor

performance at a specific probability as the current.

Equation (1) shows this probability, where 𝑇 represents

the current temperature. Fifth, the current temperature is

multiplied by the cooling rate. Sixth, we compare the

current temperature to the end temperature. If the current

temperature is higher, we repeat steps 2-6; otherwise, the

process ends.

(1) 𝑃 = 𝑒
𝐽(𝑐𝑢𝑟𝑟𝑒𝑛𝑡)−𝐽(𝑛𝑒𝑤)

𝑇

2.4. Cost Function

We use log loss function to evaluate the models. Log

loss function is a typical cost function used to evaluate

the performance of models in multiclassification

problems. Equation (2) is the log loss function.

(2) 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑁
∑ ∑ 𝑦𝑛,𝑚 log(𝑝𝑛,𝑚)

𝑀

𝑚=1

𝑁

𝑛=1

𝑁 is the total number of test data, 𝑀 is the total

number of labels, 𝑦𝑛,𝑚 is the answer probability, and

𝑝𝑛,𝑚 is the prediction value. The closer the log loss value

is to 0, the better the model predicts [7].

2.5. Data [7]

This paper uses the data presented in ref. [7]. The

training data consists of actual abnormal operation and

simulation data based on operating nuclear power plant.

The simulation data is not identical to the actual data, but

the trends are similar, making it suitable for training data.

As for the data features, 21 out of the 82 abnormal

statuses are simulated, and then the 21 abnormal statuses

are divided into 198 cases. Each data contains 5,121

variables, with a total of 827 data available. These

variables were obtained for 10 minutes at 1-second

intervals. Data are assumed to be normal until a specific

time but in an abnormal state afterward. This paper

assumes a specific time of 10 seconds.

3. Experiment

For training the two models, we separate the 827 data

in ref. [7] into 582 training data, 145 validation data, and

100 test data. Then we train the models and optimise the

models with the SA method. When using the SA method,

we set the initial temperature to 1,000, the limit

temperature to 1, and the cooling rate to 0.9. In addition,

cost is the cost function value of the model obtained

using test data.

Fig. 1 shows the entire training process of the models.

Fig. 1. Entire training process

When training both models, we used the early

stopping. Early stopping is a feature that stops training if

the performance of the model does not improve. It

prevents the model from overfitting. In this training, we

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

set it to stop if the performance does not improve for 50
epochs.

4. Result and Discussion

Fig. 2 and Fig. 3 are the learning curves of the two

models. XGBoost has a training score of 0.0421 and a

validation score of 0.6845. LightGBM has a training

score of 0.2335 and a validation score of 0.6133.

Fig. 2. XGBoost learning curves

Fig. 3. LightGBM learning curves

Table 3 shows the optimized parameters obtained by

SA. Table 4 shows the log loss and training time of the

two optimized models. We use test data for log loss.

Table 3. Optimized hyperparameters

Hyperparameters XGBoost LightGBM

learning_rate(eta) 0.646495 0.193919

num_leaves - 400

n_estimator 300 300

max_depth 7 -1

min_child_weight 4 8

subsample 0.462069 0.465144

colsample_bytree 0.709519 0.634746

objective softprob multiclass

Table 4. Performance evaluation result

Model Log loss score
Training time

(second)

XGBoost 0.292732 2,336

LightGBM 0.272960 141

Comparing the log loss values in Table 4, we see that

LightGBM performs better than XGBoost. Also,

comparing the training time, we see that LightGBM is

significantly faster than XGBoost. This is related to the

size of the training data.

Multiplying the number of driving variables by the

measurement time and the number of data files is the size

of the training data. According to the calculation, both

models were trained with 1,788,253,200 variables. For

this reason, we see that LightGBM, which has the

advantage of fast training even with a large data size,

trained faster than XGBoost.

5. Conclusion

In this paper, we compared XGBoost and LightGBM

using abnormal condition data from a nuclear power

plant. The results showed that the performance of the two

models was similar, but the training time was

significantly different due to the size of the training data.

This indicates that LightGBM is more efficient than

XGBoost in identifying abnormalities in nuclear power

plants with many data.

However, there is a limitation in that we could not

compare the learning results for all abnormalities

because we used only 21 of the 82 abnormalities in this

study, and the number of data files is 827. Also, since we

used a combination of real and simulated data, there may

be differences when evaluating only real data. Also,

since we optimized only a limited number of hyper-

parameters for both models, there may be differences in

performance.

To overcome these limitations, we plan to add more

hyperparameters to the two models to see if their
performance improves and to compare them with other

machine learning models.

REFERENCES

[1] T. Chen, and C. Guestrin, “Xgboost: A scalable tree
boosting system”, KDD ‘16, pp. 785-794, 2016.
[2] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q.
Ye, and T.-Y.Liu, “Lightgbm: A highly efficient gradient

boosting decision tree”, Advances in neural information
processing systems, vol. 30, 2017.
[3] E. Al Daoud, “Comparison between XGBoost, LightGBM
and CatBoost using a home credit dataset”, International
Journal of Computer and Information Engineering, vol. 13, no.
1, pp. 6-10, 2019.

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

[4] "XGBoost Python Package Python API Reference",
https://xgboost.readthedocs.io/en/stable/python/python_api.ht
ml.
[5] "lightgbm.LGBMClassifier," https://lightgbm.readthedocs.
io/en/latest/pythonapi/lightgbm.LGBMClassifier.html.
[6] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi,
“Optimization by simulated annealing”, science, vol. 220, no.
4598, pp. 671-680, 1983.

[7] K. N. Y. Ho Sun Ryu, Yun Goo Kim, “Development to
Diagnose Model of Abnormal Status in Nuclear Power Plant
Operation using Machine Learning Algorithms”, Transactions
of the Korean Nuclear Society Autumn Meeting, 2020.

https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html

