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1. Introduction 

 
Research has been underway to predict the thermal 

hydraulic behaviors of Nuclear Power Plants (NPP) and 

to derive an optimal combination of mitigation strategies 

to support operator activities during severe accidents [1-

11]. As an extension of this ongoing research, this paper 

aims to predict the behavior of nuclear power plants in 

real-time during severe accidents using deep learning 

methods. This approach seeks to replace existing 

integrated severe accident analysis codes, which are 

associated with high computational costs. 

The proposed surrogate model, designed to predict 

thermal hydraulic behavior in real-time, is trained using 

extensive analysis results from integrated severe accident 

analysis codes. However, ensuring accuracy poses an 

inherent challenge, as predictions for the next time step 

depend on a restricted subset of thermal hydraulic 

variables from the analysis results, and the 

interrelationships between these variables may not be 

fully understood. 

To address this challenge, this paper explores the use 

of deep learning-based video prediction methods. 

Leveraging the similarity between multivariate time 

series and video data, these methods aim to rapidly 

predict thermal hydraulic variables during severe 

accidents without significantly compromising accuracy. 

The methodology and outcomes of predicting such 

variables are discussed herein. 

 

2. Methodologies 

 

In this section, dataset used to train surrogate models, 

some of the techniques used to construct surrogate 

models, and results quantification method are explained. 

Surrogate models introduced in this paper are a fully 

connected (linear) layer model as a baseline model, and 

a convolutional neural network (CNN)-based model 

inspired by video prediction methods. A quantitative 

comparison was also conducted between the prediction 

results from surrogate models and the results of the 

integrated severe accident interpretation code. 

 

2.1 Dataset Used to Train Surrogate Models 

 

In order for the surrogate model to approximate the 

Modular Accident Analysis Program (MAAP) 5.03, an 

integrated severe accident analysis code, using deep 

learning techniques, a comprehensive dataset was 

constructed. This dataset encompasses 12,000 instances 

of Total Loss of Component Cooling Water (TLOCCW) 

scenarios specific to the Optimized Power Reactor 1000 

(OPR1000) power plant. Instead of all components 

failing as soon as the accident begins, as in the static 

probabilistic safety assessment, the components involved 

in the accident were sequenced to fail at random times 

[12]. The occurrences of Reactor Coolant Pump Seal 

Failures followed a lognormal distribution with a mean 

time to failure of 5 hours, alongside 6 component failures 

and 3 mitigation strategies derived from the Severe 

Accident Management Guidelines (SAMG). 

Additionally, recirculation operation was not considered 

in the scenario. Component failures and implementation 

of mitigation strategies were randomized within a 72-

hour timeframe, adhering to uniform distributions. Once 

a component failure or mitigation strategy was initiated, 

it remained in effect until the conclusion of the scenario. 

And even if the component is not malfunctioning, it may 

not work if it is affected by another component. For 

example, in the case of High Pressure Safety Injection 

(HPSI), a scenario was simulated so that even if it 

operates normally, it will not operate when the water 

level of Refueling Water Storage Tank is zero. Table I 

presents a comprehensive overview of components 

involved in the Total Loss of Component Cooling Water 

(TLOCCW) scenario, along with corresponding 

mitigation strategies. All variables are binary, 

represented as 0 or 1 depending on their operating states. 

 
Table I. List of Related Components and Mitigation Strategies 

used as Surrogate Model Input 

Component 

Failures 

Reactor Coolant Pump Seal Failures 

Heat Exchanger 

High Pressure Safety Injection 

Low Pressure Safety Injection 
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Containment Spray System 

Motor Driven Auxiliary Feedwater 

Charging Pump 

Mitigation 

Strategies 

Atmospheric Dump Valves Open 

Steam Generator External Injection 

Reactor Coolant System Depressurization 

Reactor Coolant System External Injection 

 

Thermal hydraulic variables used as input and output 

to the model were also selected using SAMG. All 

thermal hydraulic variables except Reactor Pressure 

Vessel (RPV) status were selected only as variables that 

could be observed in the main control room of the plant. 

These variables were min-max scaled to values between 

0 and 1, and the RPV status was composed of a binary 

form of 0 (RPV failure) and 1 (RPV not failure) at each 

time step. Table II is a list of variables used as input and 

output of the surrogate model. 

 
Table II. List of variables used as both input and output of the 

surrogate model 

Elapsed Time (Embedded) 

Safety Injection Tank Pressure 

Refueling Water Storage Tank Water Level 

Cavity Pressure 

Hot Leg Gas Temperature 

Cold Leg Gas Temperature 

Steam Generator 1 Secondary Pressure 

Reactor Coolant System Pressure 

RPV Water Level 

Maximum Core Exit Temperature 

Steam Generator 1 Downcomer Water Level 

RPV Integrity 

 

The dataset was divided into training set (9600 

scenarios), validation set (1200 scenarios), and test set 

(1200 scenarios) at a ratio of 8:1:1. The validation set 

was used to prevent overfitting during training, and the 

test set is new data that the model has never encountered 

for the continuous inference phase. 

The type of data injected varies depending on the 

model type used. For example, in a baseline model, only 

data from one-time point is injected into the model, while 

in another model, data from multiple consecutive time 

points can be injected into the model. Descriptions of the 

models continue below. 

 

2.2 Problem Definition 

The Dataset, 𝒟 = (𝑥𝑖
𝐶×𝑇×𝐻×𝑊 , 𝑦𝑖

𝐶×𝑇`×𝐻×𝑊`)
𝑖=1

𝑁
 

consists of input 𝑥, output 𝑦, channel 𝐶 = 1, sequence 

lengths 𝑇, 𝑇`, the number of input features 𝑊 = 22, the 

number of output features 𝑊` = 12, and the number of 

piece of data 𝑁 . 𝑇  may vary depending on the 

characteristics of the surrogate model, and since the 

surrogate models used in this study all produce a single 

output, 𝑇` is 1. The goal of a surrogate model ℱ𝛩  with 

learnable parameters 𝛩  is to map ℱ𝛩 ∶  𝑥𝑖
𝐶×𝑇×𝐻×𝑊 ⟼

 𝑦𝑖
𝐶×𝑇`×𝐻×𝑊`  by optimizing learnable parameters. 

Optimal parameters 𝛩∗are as follows. 

 

𝛩∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛩
ℒ(ℱ𝛩(𝑥), 𝑦) 

 𝑥, 𝑦 ∈ 𝒟 

 

Loss function ℒ  evaluates differences between 

predicted values ℱ𝛩(𝑥) from the surrogate model, and 

desired values 𝑦 from the dataset. Mean squared error 

was used in the baseline model, and Huber loss and 

binary cross-entropy loss were used together in the CNN-

based model. 

 

2.3 Baseline Model 

 

2.3.1 Model Architecture 

To compare the performance of surrogate models, a 

baseline model which is composed of linear blocks 

structure was constructed. One linear block consists of 

four parts [Linear layer, Batch Normalization, Gaussian 

Error Linear Units Function (GELU), and Dropout]. The 

linear layer is a fully connected layer, basic form of a 

neural network, and batch normalization is one of the 

methods to help the model converge better by 

normalizing the input data to the mean and standard 

deviation. GELU is a type of activation function 

injecting nonlinearity into a neural network, and dropout 

is a technique to improve the generalization performance 

of a neural network by randomly deleting some of the 

connections between neural network layers in the train 

stage [13, 14, 15]. Figure 1 is a schematic diagram of this 

model. ‘7’ means that 7 blocks are connected in series. 

The numbers 22 and 12 are the number of input and 

output features, respectively, and 1024 is the number of 

nodes in the linear block. 

 

 
 

Fig. 1. Schematic Diagram of Baseline Model Consists of 

Fully Connected Layers 
 

2.3.2 Train and Inference Phases 
Table III. Hyperparameters of Baseline Model 

Batch Size 32 

Learning Rate 1e-4 w/ Cosine Annealing Warm Restarts 

Optimizer AdamW 

Criterion Mean Squared Error 

 

Some hyperparameters used in the train phase of 

baseline model are shown in Table III. In train phase, the 

thermal hydraulic variables, component states (binary 

type), and mitigation strategy implementation states 
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(binary type) at time t are input to the baseline model, the 

model outputs the thermal hydraulic variables at time t+1. 

Then, the loss between the predicted thermal hydraulic 

variables and the thermal hydraulic variables calculated 

with MAAP is calculated as the mean squared error, and 

the weights and biases of the surrogate model are updated 

in the direction of decreasing this loss using AdamW 

optimizer with designated learning rate scheduler [16, 

17]. Therefore, baseline model is Single Input Single 

Output (SISO) model [18]. Training process of a SISO 

model is shown in Figure 2. The loss function used in the 

train phase of the baseline model is mean squared error 

(MSE) as follows. 

 

MSE = 
1

𝑁
∑(ℱ𝛩(𝑥𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

 

 

In inference phase, the model uses autoregressive 

method as shown in Figure 3, the continuous inference 

processes of the SISO model. When the thermal 

hydraulic variables, components failure states, and 

mitigation strategies implementation states at the first 

time retrieved from the MAAP dataset are input to the 

model, the model infers the thermal hydraulic variables 

of the next time step as learned. Then, the components 

failure states, mitigation strategies implementation states, 

and inferred thermal hydraulic variables are merged and 

used as input to the model, and this inference-

concatenation process is repeated until the time step 

reaches 72 hours. 

 

 
Fig. 2. Training process of Baseline Model (SISO type). The 

superscript indicates the value predicted by the surrogate model. 

 

 
Fig. 3. Continuous inference process of Baseline Model (SISO 

type). The superscript indicates the value predicted by the 

surrogate model. 

 

The surrogate model is engineered to deduce 

information gradually, focusing on individual time steps, 

rather than attempting to predict thermal hydraulic 

variables for extended periods like 72 hours. This 

approach is necessitated by the dynamic nature of 

reinforcement learning, which aims to optimize 

mitigation strategies while considering real-time 

fluctuations in components failures and strategies 

implementation. Adopting this method ensures effective 

interaction between the surrogate model and the 

reinforcement learning agent, which would otherwise be 

hindered if attempting to process 72 hours' worth of data 

in a single prediction (multiple output). This single 

output method was used for the same reason in the other 

surrogate model that will be introduced later. 

 

2.4 Convolutional Neural Network-based Model 

 

 
Fig 4. Multivariate time series example (left) and Moving 

MNIST example (right), used as a demonstration in video 

prediction [19]. 

 

Video prediction and multivariate thermal hydraulic 

time series forecasting of a NPP are similar in that they 

deal with spatio-temporal data. Various thermal 

hydraulic variables of a NPP affect each other (spatial 

domain) and change over time (temporal domain), so it 

can be said to be spatio-temporal data. In the context of 

video prediction, it entails forecasting a series of 

forthcoming frames by analyzing previous input frames 

[18]. In one frame, each pixel has a spatial context with 

surrounding pixels, and temporal contexts exist between 

frames. Therefore, predicting thermal hydraulic 

variables, and predicting video involve learning 

representations or features that capture both spatial and 

temporal information from sequences. In other words, 

the time series used as input in this study can have the 

dimensions of batch, sequence length, channel, height, 

and width, just like video. These similarities motivated 

us to appropriately improve deep learning architectures 

for video prediction and suit them for continuous 

inference of multivariate time series. 

 

2.4.1 Macro Design 

In the domain of video prediction, the prevailing 

architectural framework involves an encoder, translator, 
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and decoder structure [18, 20]. The encoder captures 

features from observed frames, and transmits them to the 

translator, which produces prospective features. 

Subsequently, the decoder interprets these prospective 

features to reconstruct the forthcoming frame [18]. This 

method of allocating spatial information processing to 

the encoder and decoder and temporal information 

processing to the translator has become a common 

framework in video prediction because it shows high 

performance [21]. As this architecture is state-of-the-art 

in the field of video prediction, it was also adopted as a 

macro structure in this study. The overall structure of the 

CNN-based model used in this study is shown in Figure 

5. Looking at the overall structure, the encoder, translator, 

and decoder blocks are made up of several ConvNeXt 

blocks [22]. In the encoder and decoder, 4 ConvNeXt 

blocks are connected in series, and in the translator, 7 

ConvNeXt blocks are connected in series. The encoder 

and decoder are connected through long skip connections, 

and ConvNeXt blocks in the translator are also designed 

to be connected to each other through long skip 

connections [23]. In front of the encoder, there is a data 

captor block that accepts data, and behind the decoder, 

there is a readout block that outputs thermal hydraulics 

variables of the next time step. 

 

 

 
Fig. 5. Macro Structure of CNN-based Surrogate Model 

 

Unlike the ConvNeXt blocks that make up the encoder 

and decoder, the ConvNeXt blocks that make up the 

translator are not only connected through Skip 

Connections, but also input the embedded prediction 

time that passes through the fully connected layers. The 

approach, drawing inspiration from [24] and 

implemented in [18], was termed the ‘implicit 

architecture,’ involving the embedding of the target time 

step and its subsequent input to the translator. As per [18], 

optimal performance entails establishing distinct neural 

networks for predicting each target time step. However, 

implementing such a method in this study would 

necessitate the creation of up to 288 neural networks to 

process a 72-hour scenario. Hence, in [18], an alternative 

approach was adopted, consolidating multiple neural 

networks into a singular entity. This was achieved by 

incorporating the embedded time as an input to the 

translator and adjusting the neural network's weights 

accordingly. This same methodology was also employed 

in the present study. 

 

2.4.2 Micro Design 

Data Captor 

As explained in 2.4, a multivariate time series is a 

unity-height video, that is, a video with frames in which 

pixels are stretched only horizontally. Data captor block 

was designed with the intention of creating a height 

dimension like a typical video so that the kernel can 

move up and down as well as left and right during the 

convolution operation to obtain more spatial dimension 

information. This block consists of two stages: 

[Pointwise Conv2D, Pixel Shuffle]. First, Pointwise 

Conv2D layer increases the channels of the time series 

[25]. Afterwards, the Pixel Shuffle layer converts the 

stretched channels to the height dimension, turning the 

horizontally elongated time series into a frame of video 

with height and width. The functioning of pixel shuffling 

is detailed in the reference [26]. Figure 6 provides a 

simple diagram of how this block works. 

 

 
 
Fig. 6. Mechanism of data captor block  

 

ConvNeXt Block 

ConvNeXt is modernized version of ResNet [22]. 

ConvNeXt improves performance compared to ResNet 

by introducing some transformer design decisions. The 

structure of the ConvNeXt block used in this study is 

shown in Figure 7. In this study, ConvNeXt blocks were 

arranged in series to process temporal or spatial 

information. 
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Fig. 7. Schematic of ConvNeXt Block 

 

Large kernel attention (LKA) is based on the belief 

that the human visual system selectively processes 

certain stimuli in detail while allocating less processing 

resources to others, resulting in partial processing of 

potential visual inputs [27]. Based on this belief, LKA 

extracts some features from a relatively large kernel.  The 

combination of depthwise convolution and pointwise 

convolution to reduce the computational amount of 

existing convolution is described in reference [28]. 

 

Readout 

The readout block comprises bundles of [Linear, 

GELU, Layer Normalization, and Dropout] [29]. The 

readout block plays a role in adjusting the shape so that 

it can output the thermal hydraulic variables and RPV 

status of the next future step. 

 

2.4.3 Add noise to data 

Before the input data was injected into the model, 

Gaussian noise with a mean of 0, and a standard 

deviation varying from 0 to 0.03 was randomly added. 

The method of improving the generalization 

performance of a model by training the model with data 

with added noise has already been proven in [30, 31, 32]. 

The figure 8 shows the data before adding noise and after 

adding noise with a standard deviation of 0.03. 

 
Fig. 8. Normalized RCS pressure example and noise 

added data 

 

2.4.4 Train and Inference Phases of CNN-Based Model 

 

Table IV. Hyperparameters used in CNN-based Model 

Batch Size 32 

Learning Rate 1e-4 w/ Cosine Annealing Warm Restarts 

Optimizer AdamW 

Criterion Huber Loss, Binary Cross Entropy Loss 

 

The hyperparameters employed during the training 

phase of the CNN-based model are detailed in Table IV. 

Unlike the baseline model (SISO Model), in the CNN-

based model, the thermal hydraulic variables, component 

failure states, and mitigation strategies implementation 

states of the previous six time steps are simultaneously 

injected into the model. The model then outputs the 

thermal hydraulic variables for the next single time step. 

Afterwards, it goes through an optimization process of 

weights and biases like the SISO model. Therefore, this 

model can be said to be a Multiple Input Single Output 

(MISO) model (The necessity for a singular output was 

elucidated in section 2.3.2.). Figure 9 schematically 

illustrates the training process of the MISO model. For 

weights and biases update, Huber loss was used for 

thermal hydraulics variables losses, and binary cross 

entropy (BCE) was used for RPV status loss which is 

indicated as 0 or 1 [33]. 

 
𝐻𝑢𝑏𝑒𝑟 𝐿𝑜𝑠𝑠

=

{
 
 

 
 1

𝑁
∑

1

2
(ℱ𝛩(𝑥𝑖) − 𝑦𝑖)

2

𝑁

𝑖=1

 𝑓𝑜𝑟 |ℱ𝛩(𝑥𝑖) − 𝑦𝑖| ≤ 𝛿,

1

𝑁
∑𝛿 ⋅ (|ℱ𝛩(𝑥𝑖) − 𝑦𝑖| −

1

2
𝛿)

𝑁

𝑖=1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 
𝐵𝐶𝐸

= −
1

𝑁
∑[ℱ𝛩(𝑥𝑖) ⋅ 𝑙𝑜𝑔 𝑦𝑖 + (1 − ℱ𝛩(𝑥𝑖)) ⋅ 𝑙𝑜𝑔(1 − 𝑦𝑖)]

𝑁

𝑖=1
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Fig. 9. Training process of CNN-Based Model (MISO type). 

The superscript indicates the value predicted by the surrogate 

model. 

 

 
Fig. 10. Continuous inference process of CNN-based Model 

(MISO type). The superscript indicates the value predicted by 

the surrogate model 
 

Figure 10 illustrates the continuous inference 

procedure of the CNN-based model. In the figure 10, the 

autoregressive continuous inference approach was 

employed, mirroring the methodology of the baseline 

model. However, as a MISO model, at the beginning of 

inference, six time steps were simultaneously injected 

into the model, resulting in one time step in the future. 

Just because six steps are injected at once at the start of 

inference does not mean that there is any difference in 

the amount of information the baseline model receives at 

the start of inference. This is because the first six steps 

that the CNN-based model takes during inference are in 

a steady state. 

Since the input shape of the model is fixed, to continue 

inference at the next time step, the newly inferred output 

was concatenated with the component failure states and 

mitigation strategies implementation states at that time. 

Then the oldest time step is removed from the existing 

input, and the existing input is merged with newly 

inferred, (and concatenated) output. As with the baseline 

model’s inference phase, the same procedure is repeated 

until the time step reaches 72 hours. 

 

2.5 Evaluation Measure 

In the realm of time series analysis, dynamic time 

warping (DTW) serves as an algorithm for assessing the 

resemblance between two sequential temporal datasets 

[34]. The Sakoe-Chiba band reduces computational cost 

by limiting comparison operations in DTW. This band 

defines a diagonal band of constant width, and 

comparisons are performed only within this band at each 

time step. This reduces computational cost by focusing 

the comparison on areas where the two time series are 

likely to match each other. 

However, the useful thing about the Sakoe-Chiba band 

is that the DTW distance increases when the time 

alignment of the two time series is excessively 

misaligned. In the case of unconstrained DTW, even if 

the time alignment of the two time series is too different, 

if the shape is similar, the distance is low. Therefore, in 

the application of this study, where both the trend and 

value of the time series are important, it is more 

advantageous to introduce the Sakoe-Chiba band. [35]  

 

3. Results and Discussion 

 

To evaluate the models’ performances, continuous 

inference was performed using a test set that models did 

not encounter during training and validation. The test set 

consists of 1200 72-hour scenarios, and as explained in 

the methodology for continuous inference, only the first 

part of the time series, component failure states, and 

mitigation strategies implementation states are input to 

the models to infer thermal-hydraulic variables. For the 

baseline model, the inference time was about 6 seconds 

on an NVIDIA®  A100 GPU to infer 1200 72-hour 

scenarios, and for the CNN-based model, it took about 5 

minutes in the same environment. Then, DTW was used 

to measure the similarity between the predicted values 

and the values of the test dataset. 

 

3.1 Continuous Inference Results from Baseline Model 

 

 
Fig. 11. Scatter plot of the average value of the DTW distance 

between the thermal hydraulic variables predicted by the 

baseline model and the thermal hydraulic variables computed 

with MAAP. 

 
Table V. Representative values of DTW distances between 

values predicted by baseline model and values computed by 

MAAP. 

Max. Min. Median Mean Std. 

296.41 96.38 192.60 188.57 26.77 

 

Figure 11 shows a scatter plot of the average value of 

the DTW distance between the thermal hydraulic 

variables of the 1200 scenarios predicted by the baseline 

model and the thermal hydraulic variables of the 

scenarios computed with MAAP. Additionally, Table V 

shows the maximum, minimum, median, average, and 
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standard deviation of the DTW distances for the 

scenarios predicted by the baseline model. 

The scenario closest to the median of the average has 

the component failure states and mitigation strategies 

implementation states as shown in the following table VI. 

Figures 12 to 15 show the continuous inference results 

and MAAP calculation results of the thermal hydraulic 

variables of the scenario closest to the median value of 

the average. 

 
Table VI. Component Failure States and Mitigation Strategies 

Implementation States from the Scenario Closest to the Median 

of the Average. ‘’ indicates that it did not occur. 

RCP 

Seal Fail 
Hx Fail 

HPSI 

Fail 

LPSI 

Fail 

CSS 

Fail 

1  7   

MDAFW 

Fail 
CP Fail Mit 1 Mit 2 Mit 3 

 40    

 

 
Fig. 12. Baseline model inference result and MAAP calculation 

result for Normalized reactor coolant system pressure for 

average DTW distance scenario. 

 

 
Fig. 13. Baseline model inference result and MAAP calculation 

result for Normalized RPV water level for average DTW 

distance scenario. 

 

 
Fig. 14. Baseline model inference result and MAAP calculation 

result for Normalized maximum core exit temperature for 

average DTW distance scenario. 

 

 
Fig. 15. Baseline model inference result and MAAP calculation 

result for RPV Status for average DTW distance scenario. 0 

indicates RPV failure, 1 indicates RPV did not fail. 

 

3.2 Continuous Inference Results from CNN-Based 

Model 

 
Figure 16. Scatter plot of the average value of the DTW 

distance between the thermal hydraulic variables predicted by 

the baseline model and the thermal hydraulic variables 

computed with MAAP. 
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Table VII. Representative values of DTW distances between 

values predicted by CNN-based model and values computed 

by MAAP. 

Max. Min. Median Mean Std. 

122.71 1.69 8.19 15.45 17.14 

 

Figure 16 depicts a scatter plot illustrating the mean 

DTW (Dynamic Time Warping) distance between the 

thermal hydraulic variables of 1200 scenarios predicted 

by the CNN-based model and those computed using 

MAAP. Furthermore, Table VII provides statistical 

summaries including the maximum, minimum, median, 

mean, and standard deviation of DTW distances for 

scenarios predicted by the CNN-based model. 

The scenario with thermal hydraulic variables closest 

to the median of the average is accompanied by a 

description of component failure states and implemented 

mitigation strategies, outlined in Table VIII. In Table 

VIII, the mitigation strategies are being implemented 

after the RPV failure. This is due to the following 

characteristics of the dataset constructed in this study. 

The surrogate model will be used in reinforcement 

learning later, and the reinforcement learning agent uses 

mitigation strategies at random times and gradually 

optimizes the use time. In order to implement the initial 

random mitigation strategies implementation time, in-

vessel mitigation strategies were implemented after RPV 

failure. Figures 17 to 20 present the continuous inference 

outcomes and MAAP calculations pertaining to the 

thermal hydraulic variables of this particular scenario, 

positioned nearest to the median average value. 

 
Table VIII. Component Failure States and Mitigation Strategies 

Implementation States from the Scenario Closest to the Median 

of the Average. ‘’ indicates that it did not occur. 

RCP 

Seal Fail 
Hx Fail 

HPSI 

Fail 

LPSI 

Fail 

CSS 

Fail 

1 1 15   

MDAFW 

Fail 
CP Fail Mit 1 Mit 2 Mit 3 

19 50 29  49 
 

 
Fig. 17. CNN-based model inference result and MAAP 

calculation result for Normalized reactor coolant system 

pressure for average DTW distance scenario. 

 

 
Fig. 18. CNN-based model inference result and MAAP 

calculation result for Normalized RPV water level for average 

DTW distance scenario. 

 

 
Fig. 19. CNN-based model inference result and MAAP 

calculation result for Normalized maximum core exit 

temperature for average DTW distance scenario. 

 

 
Fig. 20. CNN-based model inference result and MAAP 

calculation result for RPV Status for average DTW distance 

scenario. 0 indicates RPV failure, 1 indicates RPV did not fail. 

 

3.3 Discussion 
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First, in section 3.1., Overall, it can be seen that the 

predicted results of thermal hydraulic variables and the 

MAAP calculation results do not match at all. Although 

quantitative analysis was not published in this paper, it is 

assumed that the reason these non-physical results were 

derived from the baseline model was because the 

following Markov property was introduced into the 

baseline model. 

 

𝑃(𝑋𝑡+𝑛 = 𝑥|𝑋𝑡 , 𝑋𝑡−1, ⋯ , 𝑋𝑡−𝑘) = 𝑃(𝑋𝑡+𝑛 = 𝑥|𝑋𝑡) 
 

As shown in the equation above, the Markov property 

is a stochastic process in which the past and future are 

independent of each other, conditional on the present. 

The continuous inference process of the baseline model 

can be said to be a Markov process because only the 

current input values affect the values of the next time step. 

In the training process of the baseline model, only the 

values of the variables were input and the model did not 

learn the change trends of the variables, so it is believed 

that the inference results do not match the MAAP 

calculation results. 

On the other hand, in the case of the CNN-based model 

in which six time steps were input simultaneously, this 

Markov property was somewhat relaxed, so it appears to 

have shown relatively better inference results compared 

to the baseline model. 

Originally, the ConvNeXt technique was used for 

object edge detection, video prediction, etc., but it was 

confirmed to work well for predicting multivariate time 

series. Although the recent trend in deep learning model 

development is to remove bias, CNN has been confirmed 

to perform better than the fully connected layer model if 

applied to an appropriate dataset due to its strong 

inductive bias. 

 

4. Conclusions 

 

The purpose of this study is to quickly and accurately 

predict thermal hydraulic variables and RPV failure 

points based on artificial neural networks, replacing the 

existing integrated severe accident analysis codes, which 

has relatively high computational costs. As a baseline 

model, a fully connected layer SISO model and a MISO 

model inspired by a video prediction model were 

developed, and the performance of surrogate models was 

quantified using DTW, a measure of the similarity of 

time series. The performance of the MISO model, which 

injected inductive biases to reflect the characteristics of 

the time series, was shown to be improved compared to 

the performance of the baseline model. 

Artificial neural network-based surrogate models are 

fast, but (1) they attempt extrapolation in areas where 

data learning is insufficient, and (2) they select only 

specific thermal hydraulic variables for learning, so their 

accuracy is bound to be less accurate than existing severe 

accident computational codes. This inaccuracy leads to 

unphysical results in the predictions of the surrogate 

model, and as a result, the reliability of optimizing a 

severe accident management strategies based on this 

inevitably decreases. 

As a future work, we would like to introduce a 

physics-informed neural network methodology to the 

surrogate model to prevent the surrogate model from 

producing non-physical results. Subsequent research will 

continue to attempt to maintain the inference speed of the 

surrogate model and increase accuracy by injecting 

physical constraints consisting of several mathematical 

models into the neural network that makes up the 

surrogate model. 

 

Acknowledgement 

 

This work was supported by the National Research 

Foundation of Korea (NRF) grant funded by the Korean 

government (MSIT: Ministry of Science and ICT) (No. 

RS-2022-00144202). This work was also supported by 

the Innovative Small Modular Reactor Development 

Agency grant funded by the Korea Government (MSIT) 

(No. RS-2023-00259516). 

 

REFERENCES 

 
[1] Lee et al., “Applications of Neural Network to Predict 

Reactor Vessel Failure Time for Various Component Failures 

during Severe Accident”, Transactions of the Korean Nuclear 

Society Spring Meeting, Jeju, Korea, May 19-20, 2022. 

[2] Song et al., “Feasibility Estimation of Development of Real-

time Interactive Nuclear Accident Simulation Using 

Supervised Learning”, Transactions of the Korean Nuclear 

Society Spring Meeting, Jeju, Korea, May 19-20, 2022. 

[3] Lee et al., “Applications of Supervised Machine Learning 

to Diagnose Reactor Vessel Failure”, Transactions of the 

Korean Nuclear Society Autumn Meeting, Changwon, Korea, 

October 20-21, 2022. 

[4] S. H. Song and J. I. Lee, “Applying Supervised Learning 

Algorithm to Nuclear Power Plant Severe Accident Data 

Generated from MAAP Code”, Transactions of the Korean 

Nuclear Society Autumn Meeting, Changwon, Korea, October 

20-21, 2022. 

[5] J. Y. Bae and S. J. Kim, “Applicability Study of Deep 

Reinforcement Learning to Severe Accident Analysis”, 

Transactions of the Korean Nuclear Society Spring Meeting, 

Jeju, Korea, May 18-19, 2023. 

[6] Lee et al., “Inferring Severe Accident Scenarios in Nuclear 

Power Plants with Reinforcement Learning (RL) and 

Supervised Learning (SL) Approaches: Part 1 SL 

Development”, Transactions of the Korean Nuclear Society 

Spring Meeting, Jeju, Korea, May 18-19, 2023. 

[7] Song et al., “Inferring Severe Accident Scenarios in Nuclear 

Power Plants with Reinforcement Learning (RL) and 

Supervised Learning (SL) Approaches: Part 2 RL 

Development”, Transactions of the Korean Nuclear Society 

Spring Meeting, Jeju, Korea, May 18-19, 2023. 

[8] Joo et al., “Inferring Severe Accident Scenarios in Nuclear 

Power Plants with Reinforcement Learning (RL) and 

Supervised Learning (SL) Approaches: Part 3 Sensitivity of RL 

to SL” Transactions of the Korean Nuclear Society Spring 

Meeting, Jeju, Korea, May 18-19, 2023. 

[9] Lee et al., “Detecting Core Uncovery with Limited 

Information during Severe Accident Using Machine Learning 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 
Methods”, Transactions of the Korean Nuclear Society Autumn 

Meeting, Gyeongju, Korea, October 26-27, 2023. 

[10] Song et al., “Utilizing Artificial Neural Networks to 

Forecast Remaining Time to Reactor Pressure Vessel Failure 

during Severe Accident”, Transactions of the Korean Nuclear 

Society Autumn Meeting, Gyeongju, Korea, October 26-27, 

2023. 

[11] Joo et al., “Accelerated Prediction of Severe Accident 

Progression: Sensitivity of Deep Neural Network Performance 

to Time Resolution”, Transactions of the Korean Nuclear 

Society Autumn Meeting, Gyeongju, Korea, October 26-27, 

2023. 

[12] KAERI., “Development of Site Risk Assessment & 

Management Technology including Extreme External Events – 

Development of the Integrated Risk Assessment Technology 

for Multiple Units”, KAERI/RR-3924/2014, KAERI, 2015. 

[13] S. Ioffe and C. Szegedy, "Batch normalization: 

Accelerating deep network training by reducing internal 

covariate shift," in International conference on machine 

learning, 2015: pmlr, pp. 448-456. 

[14] D. Hendrycks and K. Gimpel, "Gaussian error linear units 

(gelus)," arXiv preprint arXiv:1606.08415, 2016. 

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, 

and R. R. Salakhutdinov, "Improving neural networks by 

preventing co-adaptation of feature detectors," arXiv preprint 

arXiv:1207.0580, 2012. 

[16] I. Loshchilov and F. Hutter, "Decoupled weight decay 

regularization," arXiv preprint arXiv:1711.05101, 2017. 

[17] I. Loshchilov and F. Hutter, "Sgdr: Stochastic gradient 

descent with warm restarts," arXiv preprint arXiv:1608.03983, 

2016. 

[18] M. Seo, H. Lee, D. Kim, and J. Seo, "Implicit Stacked 

Autoregressive Model for Video Prediction," arXiv preprint 

arXiv:2303.07849, 2023. 

[19] N. Srivastava, E. Mansimov, and R. Salakhudinov, 

"Unsupervised learning of video representations using lstms," 

in International conference on machine learning, 2015: PMLR, 

pp. 843-852. 

[20] Z. Gao, C. Tan, L. Wu, and S. Z. Li, "Simvp: Simpler yet 

better video prediction," in Proceedings of the IEEE/CVF 

Conference on Computer Vision and Pattern Recognition, 2022, 

pp. 3170-3180. 

[21] C. Tan et al., "Temporal attention unit: Towards efficient 

spatiotemporal predictive learning," in Proceedings of the 

IEEE/CVF Conference on Computer Vision and Pattern 

Recognition, 2023, pp. 18770-18782. 

[22] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, 

and S. Xie, "A convnet for the 2020s," in Proceedings of the 

IEEE/CVF conference on computer vision and pattern 

recognition, 2022, pp. 11976-11986. 

[23] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and 

C. Pal, "The importance of skip connections in biomedical 

image segmentation," in International Workshop on Deep 

Learning in Medical Image Analysis, International Workshop 

on Large-Scale Annotation of Biomedical Data and Expert 

Label Synthesis, 2016: Springer, pp. 179-187. 

[24] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. 

Wetzstein, "Implicit neural representations with periodic 

activation functions," Advances in neural information 

processing systems, vol. 33, pp. 7462-7473, 2020. 

[25] B.-S. Hua, M.-K. Tran, and S.-K. Yeung, "Pointwise 

convolutional neural networks," in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2018, 

pp. 984-993. 

[26] W. Shi et al., "Real-time single image and video super-

resolution using an efficient sub-pixel convolutional neural 

network," in Proceedings of the IEEE conference on computer 

vision and pattern recognition, 2016, pp. 1874-1883. 

[27] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. 

Hu, "Visual attention network," Computational Visual Media, 

vol. 9, no. 4, pp. 733-752, 2023. 

[28] F. Chollet, "Xception: Deep learning with depthwise 

separable convolutions," in Proceedings of the IEEE 

conference on computer vision and pattern recognition, 2017, 

pp. 1251-1258. 

[29] J. L. Ba, J. R. Kiros, and G. E. Hinton, "Layer 

normalization," arXiv preprint arXiv:1607.06450, 2016. 

[30] Z. Hussain, F. Gimenez, D. Yi, and D. Rubin, "Differential 

Data Augmentation Techniques for Medical Imaging 

Classification Tasks," AMIA ... Annual Symposium 

proceedings. AMIA Symposium, vol. 2017, pp. 979-984, 04/16 

2018. 

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. 

MIT press, 2016. 

[32] S. Huq, P. Xi, R. Goubran, J. J. Valdés, F. Knoefel, and J. 

R. Green, "Data Augmentation using Reverb and Noise in Deep 

Learning Implementation of Cough Classification," in 2023 

IEEE International Symposium on Medical Measurements and 

Applications (MeMeA), 14-16 June 2023 2023, pp. 1-6, doi: 

10.1109/MeMeA57477.2023.10171862. 

[33] P. J. Huber, "Robust Estimation of a Location Parameter," 

The Annals of Mathematical Statistics, vol. 35, no. 1, pp. 73-

101, 29, 1964. [Online]. Available: 

https://doi.org/10.1214/aoms/1177703732. 

[34] D. J. Berndt and J. Clifford, "Using dynamic time warping 

to find patterns in time series," presented at the Proceedings of 

the 3rd International Conference on Knowledge Discovery and 

Data Mining, Seattle, WA, 1994. 

[35] Z. Geler, V. Kurbalija, M. Ivanović, M. Radovanović, and 

W. Dai, "Dynamic Time Warping: Itakura vs Sakoe-Chiba," in 

2019 IEEE International Symposium on INnovations in 

Intelligent SysTems and Applications (INISTA), 3-5 July 2019 

2019, pp. 1-6, doi: 10.1109/INISTA.2019.8778300. 

 


