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1. Introduction 

 
To ensure the safety and efficiency of nuclear power 

plants(NPPs), operators monitor various instrumentation 
signals and alarms, and conduct diagnostic actions if any 
event or accident occurs. Since accurate diagnosis is 
essential for establishing proper mitigation strategy, and 
inappropriate diagnosis under harsh condition may result 
in severe consequences, event/accident diagnosis is 
regarded as one of the important tasks of operators in 
NPPs.   

Although procedures for event/accident diagnosis are 
well-defined, still there exists a possibility of human 
error occurrence due to various factors including but not 
limited to time pressure for diagnosis and excessive 
information inflow. In this regard, there have been efforts 
for the development of artificial intelligence(AI)-based 
event/accident diagnosis models. Especially, due to the 
rapid advancement of AI technology based on deep 
neural network(DNN), recently developed 
event/accident diagnosis models are showing 
outstanding performances[1, 2]. 

Most of previously developed AI-based classification 
models, including NPP event/accident diagnosis models 
have common drawback that they always deduce output 
among the pre-defined classes, although there exists a 
possibility that the input is irrelevant to any of them. 
However, due to various reasons such as limitation of 
simulators or limitation on the amount of data, most of 
diagnosis models are unable to cover entire possible 
event/accident scenarios. Under the unexpected or 
untrained situations, the model’s confident-yet-
inaccurate output could make operators to be confused, 
leading to the inappropriate responses.  

Therefore, for the practical application of AI-based 
event/accident diagnosis model, the concept of open set 
recognition should be considered that grants the ability 
for detecting untrained classes to the model. In this study, 
the applicability of OpenMax[3]-which is one of the 
representative open set recognition method-for the NPP 
diagnosis model is investigated. For the experiments, 
simple accident diagnosis model is developed based on 
data acquired from compact nuclear simulator(CNS)[4], 
and OpenMax method is applied for the detection of 

untrained class(i.e. intentionally neglected class of data 
during training). 

The rest of paper is organized as follows. In chapter 2, 
brief explanation about OpenMax method is provided. In 
chapter 3, processes of experiments and the 
corresponding results are described. Chapter 4 
summarizes and concludes the paper. 

 
2. Method: OpenMax 

 
For the open set recognition in NPP accident diagnosis 

model, OpenMax[3] method is applied in this study. 
OpenMax is one of the discriminative open set 
recognition methods, which focus on defining precise 
decision boundaries of trained classes and then setting 
thresholds to detect untrained classes. The method is 
simple to implement since the underlying concepts are 
intuitive, and easy to apply as the method does not 
involve model configuration changes. 

There are two steps need for the application of 
OpenMax, that are preparation step and execution step. 
Preparation step is for establishing standards for 
detecting untrained classes based on training data, while 
execution step is for conducting actual untrained class 
detection for given input. During these steps, the method 
utilizes activation vector(AV), which is a set of node 
values in output layer before activation. 

There are three sub-steps in preparation step, which 
are P1) data sorting, P2) AV profiling, and P3) extreme 
value fitting. 

 
P1) data sorting: in this step, only correctly classified 

training data by the model are sorted and separated 
according to the class.  

P2) AV profiling: in this step, mean AV and mean 
distance between mean AV and AVs of each data are 
calculated for each trained class. The distance is 
calculated with Euclidean-cosine distance measure, 
which can be represented as follows. 

 
𝐸𝐶_𝑑𝑖𝑠𝑡 = 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 × (1 − 𝑐𝑜𝑠_𝑠𝑖𝑚) 
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 = ‖(𝑉ଵ − 𝑉ଶ)‖ଶ                                  
𝐶𝑜𝑠௦௜௠ = ‖𝑉ଵ‖ଶ ∙ ‖𝑉ଶ‖ଶ                                        
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Where 𝐸𝐶_𝑑𝑖𝑠𝑡  is Euclidean-cosine distance, 
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡  is Euclidean distance, 𝐶𝑜𝑠_𝑠𝑖𝑚  is 
cosine similarity, 𝑉ଵ  and 𝑉ଶ  are given AVs and ‖∙‖ଶ 
implies the L2-norm. 

P3) extreme value fitting: in this step, distribution of 
calculated distances is estimated based on extreme value 
theory(EVT) for each class. In general, Weibull 
distribution is applied for fitting. For the distribution 
estimation, top 𝜂 (hyperparameter) farthest AVs from 
mean AV of each class are selected as extreme values. 
Probability density function(PDF) of Weibull 
distribution can be represented as follows. 

 

𝑓(𝑥; 𝜆, 𝑘) = ൝
𝑘

λ
(
𝑥

λ
)௞ିଵ𝑒ି(௫/ఒ)ೖ

, 𝑥 ≥ 0

0,                                      𝑥 < 0
 

Where k and λ are positive shape and scale parameter 
of the distribution, respectively. 

 
There are also three sub-steps in execution step, which 

are E1) AV calculation, E2) probability calculation, and 
E3) AV revision. 

 
E1) AV calculation: in this step, AV of the given input 

and its distance from mean AV of each trained class are 
calculated. 

E2) probability calculation: in this step, based on the 
estimated distance distribution at step P2), probability 
that the distance to be same or lower than the calculated 
distance from mean AV is calculated for each trained 
class. If the AV of input is similar to the specific class’ 
mean AV, the calculated probability for corresponding 
class would be low. If the AV of input is highly different 
from specific class’s mean AV, the calculated probability 
for that class would be high. The calculated probability 
for class k is denoted as ωk, and utilized in the next sub-
step. 

E3) AV revision: in this step, based on the calculated 
probability at step E2), AV of the input is revised, and 
new element for untrained class is added. For class k, 
revision of AV is conducted as follows. 

 
𝐴𝑉௞

ᇱ = (1 − 𝜔௞) × 𝐴𝑉௞ 

𝐴𝑉଴
ᇱ = ෍(𝜔௜ × 𝐴𝑉௜)

௜∈௄

 

𝐾 = 1, 2, … 𝑁 (N: number of trained classes) 
 
Where 𝐴𝑉௞  and 𝐴𝑉௞

ᇱ  represents the element 
correspond to the trained class k  before and after the 
revision, respectively. 𝐴𝑉଴

ᇱ represents the added element 
correspond to the untrained class after the revision. 

Revised classification probabilities can be easily 
calculated based on revised AV and Softmax function. 
Revised classification probability for class k and 
untrained class can be represented as follows. 

 

𝑃𝑟(𝑘) =
exp(𝐴𝑉௜

ᇱ)

exp(𝐴𝑉଴
ᇱ) + ∑ exp(𝐴𝑉௜

ᇱ)௜∈௄

                    

𝑃𝑟(𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑) =
exp (𝐴𝑉଴

ᇱ)

exp(𝐴𝑉଴
ᇱ) + ∑ exp (𝐴𝑉௜

ᇱ)௜∈௄

 

𝐾 = 1, 2, … 𝑁 (N: number of trained classes) 
 
Where 𝑃𝑟 (𝑘) is the revised classification probability 

for class k, and 𝑃𝑟 (𝑢𝑛𝑡𝑟𝑎𝑖𝑛𝑒𝑑)  is the classification 
probability for untrained class.  

 
3. Experiments 

 
To conduct experiments, a simple NPP accident 

diagnosis model is developed in this study. Experiments 
are conducted through the following steps: data 
acquisition and preprocessing, model development and 
training, and application of OpenMax method.  

 
3.1 Data acquisition and preprocessing 

 
For the development of accident diagnosis model, data 

is acquired from simulations with compact nuclear 
simulator(CNS)[4]. Reference plant of CNS is 
Westinghouse 3-loop MWe pressurized water 
reactor(PWR). Loss of coolant accident(LOCA) from 
loop 1/2/3 cold/hot leg(break sizes from 15 to 35cm2, 
with 5cm2 interval), steam generator tube rupture(SGTR) 
from loop 1/2/3(break sizes from 4 to 20cm2, with 4cm2 
interval), and main steam line break(MSLB) from loop 
1/2/3 inside/outside containment(break sizes from 500 to 
1000cm2, with 100cm2 interval) accident scenarios are 
considered. Simulations are conducted for 20 minutes 
from reactor trip and signals from 5 to 15 minutes are 
used as data. As variables, totally 19 kinds of variables 
are acquired during simulation(refer Table I).  

After the simulation, minimum-maximum 
scaling(min-max scaling) is applied to set the range of 
variables between 0 and 1, and unit data with 5 minutes 
length is generated with 10 seconds interval. 

 
Table I: list of acquired variables during simulation 

Acquired variables Units 
Cold leg temperature (loop 1/2/3) 
PZR pressure 
PZR level 
S/G pressure (loop 1/2/3) 
S/G level – Wide range (loop 1/2/3) 
Feedwater flow (line 1/2/3) 
Steamline flow (line 1/2/3) 
Containment radiation 
Secondary cooling system radiation 

℃ 
kg/cm2 
% 
kg/cm2 
% 
ton/hr 
ton/hr 
mRem/hr 
μCi/cc 

 
Total number of generated unit data is 558 for LOCA, 

279 for SGTR, and 744 for MSLB accident scenario. 
Among them, 70% are used for training, 15% for 
validation, and rest 15% for testing. 
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3.2 Model development and training 

 
Based on the acquired data, DNN-based simple 

accident diagnosis model that consist of five fully-
connected feed-forward layers is developed and trained. 
Except output layer with Softmax activation function, 
ELU(exponential linear unit) activation function is 
applied to all other layers. Fig. 1 is a schematic of 
developed accident diagnosis model. 

Models are separately developed with changing the 
neglecting accident class. First model is trained with 
neglecting MSLB data(referred as case 1), while second 
model is trained with neglecting SGTR data(referred as 
case 2) and third model is trained with neglecting LOCA 
data(referred as case 3).  

As a result, 3 kinds of models are developed with 
changing neglected accident class. All developed models 
have achieved 100% accuracy for the 
training/validation/testing data.    

 

 
Fig. 1. Schematic of developed accident diagnosis model 
 
3.3 Application of OpenMax method 

 
For the developed accident diagnosis models, 

OpenMax methods are applied to detect untrained class. 
Experiments are conducted with changing η value from 
10 to 300. 

Table II represents the results that achieved highest 
mean classification accuracy of trained and untrained 
classes. Negative values in brackets represent the 
decrement of classification accuracies due to the 
application of OpenMax method. Fig. 2, 3 and 4 
represent the changes of classification accuracies 
according to  η value for each case. 

 
Table II: Classification accuracies 

 LOCA SGTR MSLB 
Case 1 
U*: 
MSLB 

98.92% 
(-1.08%) 

100.00% 
(-0%) 

99.06% 
(Untrained) 

Case 2 
U: SGTR 

100.00% 
(-0%) 

100.00% 
(Untrained) 

100.00% 
(-0%) 

Case 3 
U: 
LOCA 

100.00% 
(Untrained) 

99.28% 
(-0.72%) 

98.66% 
(-1.34%) 

*’U’ represents untrained class 
 

 
Fig. 2. Classification accuracies for case 1 with changing η 
value (best when η = 50) 

 

 
Fig. 3. Classification accuracies for case 2 with changing η 
value (best when η = 30) 

 

 
Fig. 4. Classification accuracies for case 3 with changing η 
value (best when η =120) 

 
From the experiments, it is revealed that the OpenMax 

method is able to detect untrained class with over 99% 
accuracy in every cases, with about 1% classification 
accuracy drop for trained classes.  

For the cases with changing untrained classes, η values 
correspond to the best performances are different. In 
general, increasing the η value tends to result in increased 
probability for untrained class detection, while it also 
decreases the classification performance of trained 
classes. Setting of proper η value is important for 
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untrained class detection, since the performances for 
untrained class detection and trained class classification 
are in trade-off relations in macroscopic view. 

In practice, experiments for ‘actual’ untrained class 
detection would be difficult since there would be no 
available data for untrained class. Alternatively, sub-
optimal η value can be found based on the experiments 
with intentional neglection of specific class within 
acquired data, similar to the experiments conducted in 
this study, 

 
4. Conclusions 

 
In this study, OpenMax method, which is one of the 

open set recognition method is applied for the detection 
of untrained class in NPP accident diagnosis model. For 
the experiments, DNN-based simple accident diagnosis 
model is developed based on data acquired from CNS, 
and OpenMax method is applied to check the 
performance for untrained class detection and 
classification performance drop for trained class during 
the application. The experiment results have shown that 
the OpenMax method is capable of untrained class 
detection with high accuracy, with acceptable 
classification performance drop for trained classes.  

As future works, the effects of model structure and 
input space complexity to the untrained class detection 
will be investigated. In addition, comparison between 
various open set recognition methods will be conducted.  
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