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1. Introduction 

 
Flow boiling is a critical process in high-efficiency 

thermal management systems, including refrigeration, 

microelectronics cooling, and nuclear power plants. As 

the fluid absorbs heat and transitions to a vapor phase, 

the heat transfer from the surface is significantly 

improved, due to the latent heat of vaporization. This 

process begins with the onset of nucleate boiling (ONB), 

marking the initiation of bubble formation, and is 

constrained by the departure from nucleate boiling 

(DNB), where the boiling surface becomes enveloped by 

a vapor film, leading to a sharp decline in heat transfer 

efficiency.  

Among contemporary techniques, total reflection 

visualization and infrared thermography provide 

important insights into the dynamic and thermal behavior 

of coalescing bubbles and their expansion, especially 

when these techniques are used at the same time [1, 2]. 

The acquired experimental data have significantly 

enhanced the understanding of boiling phenomena, 

particularly at the DNB, drawing on results that 

simultaneously measure the shape and temperature 

distribution of dry patches formed on the boiling surface. 

Jeon et al. employed these techniques to observe and 

analyze the behavior and formation process of bubble 

structures and dry patches, presenting findings on the 

thermal criteria of the dry patch periphery at DNB under 

various testing conditions [3]. Yet, despite the fact that 

extensive research has been conducted for a long time to 

elucidate its mechanisms, the understanding of flow 

boiling heat transfer remains incomplete due to the 

complex thermal-hydraulic interactions between 

momentum transfer and heat transfer within the system. 

On the other hand, recent advancements in 

convolutional neural networks (CNNs) have underscored 

the remarkable proficiency of neural networks in 

capturing visual features, raising the possibility of 

simplifying complex experimental setups and data 

extraction [4]. Particularly with the introduction of 

generative adversarial networks (GANs), learning the 

style of input data and generating images has become 

easier, allowing various image processing tasks to be 

addressed within a unified framework [5]. Deep 

convolutional GANs (DCGANs) have enhanced the 

stability of the learning process and the ability to capture 

visual features [6]. Conditional GANs (cGANs) have 

introduced the capability for rapid image transformations 

using a convolutional generator and a discriminator 

architecture [7].  

This study presents a cGAN-based approach to learn 

and identify the potential styles of temperature field at 

the boiling surface to generate outputs even though the 

transfer function between the optical visualization and 

infrared thermometry is not explicitly known. The 

ablation results of the cGAN networks are presented, 

focusing on simplifying and facilitating the rapid training 

and the generation of images by extracting important 

information from large datasets. The thermographic 

images produced in this study were compared with 

experimentally measured infrared thermography images, 

enhancing the reliability of the research findings. 

 

2. Methodology 

 

2.1 Flow Boiling Data Acquisition and Visualization 

 

The data used in this study consists of total reflection 

visualization images and infrared thermographic images 

captured under the conditions of a flow boiling 

experiment. The main test section of this experiment was 

made of PEEK with four windows using quartz, pyrex 

and sapphire. The IR camera faced an Indium Tin Oxide 

(ITO) heater. The total reflection visualization images 

were captured using a Memrecam GX-3 high-speed 

camera, and the infrared imageries were captured using 

a FLIR X6903sc camera. The experimental conditions 

are as follows: 

Table I: Experimental Conditions 

ID 
Inlet 

Temperature 

Mass 

Flow rate 
Heat Flux 

1 94.5℃ 250 kg/s/𝑚2 399 kW/𝑚2 

2 95.6℃ 250 kg/s/𝑚2 796 kW/𝑚2 

3 95.3℃ 249 kg/s/𝑚2 1197 kW/𝑚2 

4 94.3℃ 249 kg/s/𝑚2 1549 kW/𝑚2 

 

Further experimental details can be found in [3]. 

 

2.2 Implementation of cGANs 
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The objective function of mapping total reflection 

visualization images to infrared thermographic images 

can be represented as follows: 

 

𝐺∗ = arg min
𝐺

max
𝐷

(ℒ𝑐𝐺𝐴𝑁(𝐷, 𝐺) + ℒ𝐿1(𝐺)) 

 

Here, ℒ𝑐𝐺𝐴𝑁  denotes the conditional adversarial loss 

function derived from the output of discriminator and 

ℒ𝐿1 denotes the L1 loss between the generated image and 

the ground truth infrared image. The quality of the 

generated images is improved by the learning process 

where both the generator and discriminator strive to 

minimize the objective function, which is expressed as: 

 

ℒ𝑐𝐺𝐴𝑁 = 𝔼𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)[log𝐷(𝑦|𝑥)] 

                +𝔼𝑦̂~𝑝𝑑𝑎𝑡𝑎(𝑦̂) [log (1 − 𝐷(𝐺(𝑦̂|𝑥)))] 

 

Where the first term represents the expected value of 

the log probability that the discriminator correctly 

classifies the actual images (𝑦) based on the condition (𝑥). 

The second term represents the expected value of the log 

probability that the discriminator incorrectly identifies 

the generated images (𝑦̂). This is learned using a binary 

cross-entropy loss function that compares generated 

outputs with actual values.  

During the training process, the generator attempts to 

fool the discriminator into believing its produced 

infrared images are convincing, while the discriminator 

tries to distinguish between actual and generated infrared 

images. Through this optimization process, both the 

generator and discriminator are iteratively updated, 

allowing the model to effectively learn how to generate 

realistic images indistinguishable from actual ones. That 

is, when equilibrium is reached through training, the 

neural network's generator (G) is trained to transform 

input images into output images similar to the target. 

Meanwhile, the discriminator (D) aims to distinguish 

between actual and generated images, bringing the 

conditional probability of predictions based on input 

closer to the conditional probability of actual values 

based on input. 

 

2.3 Neural Network Structure 

 

In this study, a modified U-Net structure was used as 

the generative model to create images. The structure of 

the generator consists of an encoding path and a decoding 

path. The encoding path comprises a series of 

downsampling modules that transform the total 

reflection image domain into a latent space to understand 

the spatial information of the input image. The decoding 

path consists of a series of upsampling modules that 

transform the latent variable back into the infrared 

thermographic image domain to generate the output 

image. Skip connections between the two paths help 

preserve low-level information shared between the input 

and output. 

 

2.4 Training Principles 

 

The cGAN models are trained by pairing total 

reflection visualization and infrared thermographic 

images, aligning with the actual visualization results of 

boiling experiments. The dataset consists of 1800 images 

for each of the experimental conditions, with images for 

the training and test datasets randomly shuffled at a 9:1 

ratio. Training was conducted over a total of 100 epochs, 

and for each training batch, images were generated 

through a forward pass by the generator, then both the 

generative adversarial loss and L1 pixel-wise loss were 

calculated using these images and their corresponding 

actual images. Based on these loss functions, the weights 

of the generator were updated, with the learning rate for 

the generator set to 2e-4, and the β values for the Adam 

optimization algorithm set to 0.5 and 0.999. The model 

was initialized with random variables having a mean of 

0 and a standard deviation of 0.02, and the entire model 

implementation and training were conducted using 

Python 3.10.4, PyTorch 1.12.0, CUDA 11.3.58, cuDNN 

8.2.0, and an RTX3070Ti on an Ubuntu 20.04 system. 

 

2.5 Ablation Test Matrix 

 

The ablation tests of this study are designed to assess 

the network structure. The depth of the network at the 

generator varies from 2 to 6, both at the encoder and the 

decoder sides. Fig. 1 lays out the brief structure of the 

generator and the discriminator, where the input of the 

generator is the total reflection image and the output is 

the infrared thermography. 

 

 
Fig. 1.  Schematic representation of the ablation study on 

the generator structure of cGANs 

 

The basis for the generator architecture is as follows: 

Table II: Generator Architecture (encoder, decoder) 

 

The encoder and the decoder have the same structure 

to compress the input the latent variable and the expand 

it to generate the images, and the layers were chosen 

based on the depth, starting from layer (1,2), (1,2,3), 

Layer 
Input 

Channel 

Output 

Channel 

Kernel 

Size 
Stride Padding Normalization Dropout 

1 3 64 (4,3) (2,1) (1,0) False - 

2 64 128 (3,3) (2,2) (1,1) True - 

3 128 256 (3,3) (2,2) (1,1) True - 

4 256 256 (3,3) (2,2) (1,1) True 0.5 

5 256 256 (3,3) (2,2) (0,1) True 0.5 

6 256 256 (2,2) (2,1) (0,0) True 0.5 
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(1,2,3,4), (1,2,3,4,5) and (1,2,3,4,5,6), whose number 

ranges from 2 to 6, as in the Table II. 

 

3. Results and discussion 

 

3.1 Ablation of the neural network architecture 

 

In each instance, modifications to the U-Net 

architecture impact the networks' spatial representations. 

Specifically, as the layered structure of the U-Net 

architecture, through skip connections, allows the model 

to retain spatial information, alterations in the layer count 

can affect its predictive capabilities. Fig. 2 illustrates the 

conversion of total reflection images into infrared images, 

highlighting the outcomes associated with varying 

numbers of layers. 

 

 
Fig. 2.  Snapshots of the generated images at various heat 

fluxes and network depths 

 

To quantify the model's accuracy, two image quality 

metrics were employed: Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index Measure (SSIM). 

PSNR is defined as follows: 

 

PSNR = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) , 

 MSE =  
1

𝑀𝑁
∑ ∑[𝐼(𝑖, 𝑗) − 𝐼(𝑖, 𝑗)]

2
𝑁−1

𝑗=0

𝑀−1

𝑖=0

 

 

Here, 𝑀𝐴𝑋𝐼  represents the maximum pixel value of 

the image, and MSE denotes the mean square error 

between the original and reconstructed images, with M 

and N as the dimensions of the image. 

SSIM assesses the combination of luminance, contrast, 

and structure and is defined as follows [8]: 

 

𝑆𝑆𝐼𝑀(𝐼, 𝐼) =
(2𝜇𝐼𝜇𝐼 + 𝐶1)(2𝜎𝐼𝐼 + 𝐶2)

(𝜇𝐼
2 + 𝜇𝐼

2 + 𝐶1)(𝜎𝐼
2 + 𝜎𝐼

2 + 𝐶2)
 

 

Where 𝜇𝐼  and 𝜇𝐼  are the means, 𝜎𝐼
2  and 𝜎𝐼

2  are the 

variances of the original and reconstructed images, 

respectively, and 𝜎𝐼𝐼  is the covariance. Constants 𝐶𝑖 =
(𝑘𝑖𝐿)2,   𝑘𝑖 = 0.01, 𝑘2 = 0.03, 𝐿 = 255  are used. The 

image quality metrics of the test data are shown in Fig. 3. 

 

 
Fig. 3.  Heatmap of the average image quality metrics of 

the test 

 

The optimal complexity of neural networks is directly 

indicative of the data complexity, as additional layers 

cease to enhance performance once the optimum is 

reached. One of the primary reasons additional layers are 

not needed in a neural network is due to the risk of 

overfitting. The model learned the training data too well, 

capturing even noise or random fluctuations in the data 

instead of underlying distribution. This is effectively 

demonstrated in Fig. 3, where, at a low heat flux of 399 

kW/𝑚2  and the flow boiling still in the single-bubble 

regime, as the system's complexity was significantly 

lower than at a higher heat flux of 1549 kW/𝑚2, which 

was more disordered and chaotic. Therefore, this lower 

complexity is directly reflected in the superior 

performance of the neural networks with a 4-layer 

structure at the lower heat flux, while the results of the 5-

layer and 6-layer networks produced unnecessary 

artifacts of low-temperature area at the top of the image. 

Conversely, at 1549 kW/𝑚2, an increase in the number 

of layers directly benefited the neural networks' accuracy, 

highlighting the alignment between system complexity 

and network architecture. 

 

 
Fig. 4. Temperature evolution at q = 399 kW/𝒎𝟐 & 1549 

kW/𝒎𝟐 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 
Fig. 4 displays the variations in average temperature 

over time for heat fluxes of 399 kW/ 𝑚2  and 1549 

kW/𝑚2. At the lower heat flux, the mean squared error 

(MSE) of the average temperature was under 0.1°C, 

which is less than IR measurement uncertainty = 0.1°C. 

This suggests that the model can accurately predict 

average temperatures close to the actual values, 

indicating the neural network's ability to discern the 

temperature distribution patterns embedded within the 

total reflection images. Given the complexity of the 

problem, it is notable that the model provides a 

reasonable approximation of the temperature distribution.  

 

4. Conclusions 

 

This study introduced a new approach to understand 

the temperature field in flow boiling experiments using 

cGANs. This method simplifies the generation of 

temperature fields associated with infrared 

thermography by learning the temperature distribution 

tied to bubble dynamics, thereby accelerating the 

extraction of information from experimental data. 

Through an analysis of temperature field changes, the 

effectiveness of U-net-based generative models was 

evaluated, and the system's complexity was examined. 

Overall, the U-nets provided highly accurate average 

temperature estimates and reliable outcomes for local 

details. Future research might extend the application of 

this neural network model to unexplored areas, such as 

microchannels or non-penetrable surfaces. 
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