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1. Introduction 

 
The instrumentation and control system of a Nuclear 

Power Plant (NPP) performs the function of protecting 

and controlling the NPP. It consists of several electronic 

components and circuits. Currently, the integrity of the 

instrumentation and control system is checked through 

self-diagnostics functions and periodical tests. However, 

self-diagnostics is performed on the card or system level 

rather than on individual components. Additionally, in 

the case of periodical tests, it is difficult to check 

integrity during normal operation. Therefore, it is 

necessary to develop a system that can diagnose 

potential component failures occurring during NPP 

operation, predict the Remaining Useful Life (RUL), 

and perform advanced maintenance. This enables 

preemptive responses in the event of failure, preventing 

unplanned reactor trip and accidents caused by 

component failures. This study aims to perform the 

RUL prediction for the electronic components 

constituting the Reactor Protection System (RPS), one 

of the instrumentation and control systems.  

Because the acquisition of actual failure data for the 

RPS is limited, failure data is being acquired based on 

accelerated aging tests through a testbed. Accelerated 

aging tests are being conducted on 8 types of electronic 

components that are vulnerable to failure at the Korea 

Atomic Energy Research Institute and Soosan ENS. As 

failure data for RPS are currently being acquired, this 

study uses open-source data in terms of preliminary 

modeling to predict the RUL for electronic components. 

The open-source data are accelerated aging data for 

Insulated Gate Bipolar Transistors (IGBTs), subjected 

to various temperature and voltage conditions.  

The RUL prediction for IGBT was conducted using 

Long Short-Term Memory (LSTM) [1] and Monte 

Carlo (MC) [2] dropout methods. The RUL prediction 

for IGBT is performed through LSTM, which is widely 

used in RUL prediction, and uncertainty about the 

prediction results is expressed through the MC dropout 

method. The proposed RUL prediction model is a 

preliminary model toward the development of a failure 

prediction model for RPS, the ultimate goal. It confirms 

the applicability of the utilized artificial intelligence 

methods.  

 

2. Methods 

 

2.1 LSTM 

 

Recurrent Neural Network (RNN)-based methods are 

mainly used in RUL prediction research. LSTM, a type 

of RNN method, addresses the long-term dependency 

problem inherent in traditional RNNs [1]. LSTM 

selectively passes data through memory cells. It can 

learn information about long sequences. Specifically, 

the hidden state ( th ) and cell state ( tC ) values are 

calculated through gates within the memory cell (refer 

to Fig. 1). The gates include the input ( tI ), forget ( tF ), 

and output ( tO ) gates. These gates determine how much 

of the previous cell state to remember, how much new 

input information to store, and finally derive the result. 

Because these gates are automatically adjusted 

throughout the learning process, LSTM networks can 

effectively capture the temporal dependencies of time 

series data. 
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Fig. 1. Structure of LSTM cell [1]. 

 

2.2 MC dropout 

 

MC dropout is a type of Bayesian deep learning that 

estimates prediction uncertainty by probabilistically 

utilizing the dropout technique within a neural network 

[2]. MC dropout learns the model by activating each 

dropout layer of the neural network. The general 

dropout is a technology that improves generalization 

performance by randomly deactivating some neurons 

during the learning process of a neural network. In 

contrast, MC dropout deactivates some neurons not only 

in learning but also in inference, resulting in multiple 
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different outputs for the same input data. Based on the 

derived outputs, the mean and variance are calculated to 

estimate the uncertainty of predictions. In this study, a 

prediction model was developed by adding a dropout 

layer with a dropout rate of 0.5 between LSTM layers. 

Additionally, to estimate uncertainty, we obtained 100 

results for the same input data and utilized their mean 

and variance values.  

 

3. Data Preparation 

 

The data used in this study are from the IGBT 

accelerated aging dataset provided by NASA [3]. IGBT 

data were acquired through thermal overstress 

accelerated aging experiments, performed by applying a 

square signal. The IGBT data are accelerated aging test 

data for 4 devices and include information such as 

supply temperature and voltage, collector-emitter 

current and voltage. The failure mode observed in the 

IGBT data is the transistor latch-up phenomenon, 

characterized by a rapid drop in collector-emitter 

voltage due to the high current between the collector 

and emitter. Therefore, in the IGBT accelerated aging 

data, the failure point is where the collector-emitter 

voltage rapidly drops. Fig. 2 shows the changes in 

collector-emitter voltage over time, and the failure point 

is at 2,460 seconds, when the voltage suddenly drops. 

 

 
 

Fig. 2. Collector-emitter voltage values and failure time over 

time. 

 

The RUL value is calculated according to Eq. (1), 

and the calculated value is utilized as the target variable 

in the RUL prediction model. 

 

f kRUL t t  (1) 

where 
ft is failure time and kt  is the current time. 

 

The research on IGBT RUL prediction is still actively 

conducted, and in existing studies [4-6], IGBT RUL 

prediction was performed using variables such as the 

collector-emitter voltage from Fig. 2, working time, 

supply voltage and temperature, and turn-off peak 

voltage as input variables. In this study, IGBT RUL 

prediction is performed using only environmental 

variables. This is because the variables that can be 

easily obtained from NPPs are environmental variables. 

In addition, as additional input variables, both 

environmental variables and their respective means and 

exponential moving averages were used. The mean 

value represents the average of each variable up to the 

current time, while the exponential moving average 

assigns higher weights to values at the current time to 

reflect dynamic conditions. Table I shows the input 

variable groups and data standardization was performed 

based on the selected input variables. The time sequence 

of the input data for application to LSTM was 2, 5, 10, 

and 15.  

Table I: Input Variable Groups 

No. Input variables 

1 Aging time, Temperature, Voltage 

2 
Average temperature and voltage 

including variables from group 1 

3 

Exponential moving average 

temperature and voltage including 

variables from group 2 

 

4. RUL Prediction Results for IGBT 

 

The IGBT RUL prediction model was developed 

using LSTM with MC dropout according to the input 

variable groups in Table I. The developed prediction 

model is the one with the best performance among 

various hyperparameter combinations. Performance 

evaluation was performed using Mean Absolute Error 

(MAE), R-square (R2), and scoring function [7]. MAE 

is a metric that measures the mean absolute error 

between the real and predicted values; lower values 

indicate better performance. R2 is a measure indicating 

how well the variance in the dependent variable (real 

values) is explained by the independent variable 

(predicted values) in a regression model, ranging from 0 

to 1. Since the purpose of RUL prediction is to prevent 

device failure in advance, it is generally better to predict 

the time of failure early rather than late. So, the scoring 

function considers the usefulness of early predictions 

and the inadequacy of late predictions, imposing a 

larger penalty on late predictions compared to early 

ones. The lower the score calculated through the scoring 

function, the better the prediction performance. These 

evaluation metrics are calculated as in Eqs. (2)-(4). 
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where, ky  is the normalized real RUL value and ˆ
ky  is 

the predicted value. y  is the mean value of the real 

RUL values. 

 

 

The performance of the developed prediction model 

was compared with Deep Neural Network (DNN), a 

basic deep learning method. The DNN model also 

applied the MC dropout technique, similar to the LSTM 

with MC dropout model, and used the model with the 

best-performing hyperparameter combination. Tables Ⅱ-

Ⅳ show the IGBT RUL prediction results for prediction 

models developed with each input variable group. 

Overall, the LSTM model showed slightly better 

performance compared to the DNN model. Additionally, 

it was observed that the prediction performance of the 

LSTM with MC dropout model improved gradually as 

the time sequence increased. Additionally, as a result of 

comparing prediction performance by the model of 

input variable group, prediction performance was 

slightly improved in the order of group 1, group 2, and 

group 3. This indicates the meaningfulness of utilizing 

not only environmental variables but also mean values 

and dynamically adaptable exponential moving average 

values as input variables. 

 

Table Ⅱ: Prediction Results in the Model of Group 1 

Method 
Time 

sequence 

Train data Test data 

MAE R2 MAE R2 

DNN - 0.1691  0.9546  0.0818  0.9895  

LSTM 

2 0.1515  0.9647  0.0923  0.9870  

5 0.1394  0.9658  0.0944  0.9862  

10 0.1275  0.9690  0.1005  0.9824  

15 0.1107  0.9728  0.0857  0.9851  

 

Table Ⅲ: Prediction Results in the Model of Group 2  

Method 
Time 

sequence 

Train data Test data 

MAE R2 MAE R2 

DNN - 0.1317  0.9723  0.0706  0.9906  

LSTM 

2 0.1515  0.9647  0.0923  0.9870  

5 0.1394  0.9658  0.0944  0.9862  

10 0.1440  0.9597  0.1232  0.9688  

15 0.1011  0.9764  0.0555  0.9922  

 

Table Ⅳ: Prediction Results in the Model of Group 3  

Method 
Time 

sequence 

Train data Test data 

MAE R2 MAE R2 

DNN - 0.1070  0.9811  0.0791  0.9910  

LSTM 

2 0.1233  0.9752  0.0743  0.9907  

5 0.1301  0.9711  0.0809  0.9897  

10 0.0748  0.9878  0.0946  0.9836  

15 0.1024  0.9783  0.0699  0.9895  

 

Figs. 3-5 show the IGBT RUL prediction results for 

test data using the LSTM with MC dropout model in 

each input variable group. In Figs. 3-5, black line and 

dotted red line represent the real and predicted values, 

respectively. The light red shaded area represents the 

uncertainty of the prediction results, indicating the 95% 

confidence interval. This confidence interval is 

calculated based on the standard deviation of 100 

prediction results for the same input data. It shows that 

the IGBT RUL is predicted according to the trends of 

the real values in all groups for input variables. 

However, as the failure point approaches, both the 

prediction error and uncertainty values increase.  

In particular, through Tables Ⅱ-Ⅳ and Figs. 3-5, the 

MAE value in the model with group 2 input variables is 

the smallest; however, as the actual failure time 

approaches, the prediction error increases more 

significantly in this group compared to other groups. 

When predicting RUL, it is more important in terms of 

preventive maintenance to predict the time of failure 

early rather than predicting it later. So, the score was 

calculated for the test data using a scoring function. 

Table Ⅴ shows the scores for each input variable group, 

with lower score values indicating better performance. 

The model with group 2 input variables which showed 

the lowest MAE value, had the highest score calculated 

through the scoring function compared to the models 

with other input variable groups, indicating a 

diminished prediction performance relative to the other 

groups. As a result, considering all evaluation metrics, 

the model with group 3 input variables showed the best 

prediction performance. Also, it is considered that 

applying various dropout rates in the future may 

alleviate some prediction performance. 
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Fig. 3. IGBT RUL prediction results for test data in the model 

of group 1 (in the case of 15 sequences). 

 

 
 

Fig. 4. IGBT RUL prediction results for test data in the model 

of group 2 (in the case of 15 sequences). 

 

 

 
Fig. 5. IGBT RUL prediction results for test data in the model 

of group 3 (in the case of 15 sequences). 

 

Table Ⅴ: Score in the Models of All Input Groups  

Method 
Time 

sequence 
Group 1 Group 2 Group 3 

DNN - 2.2E+06 1.1E+07 4.8E+05 

LSTM 

2 2.8E+07 2.8E+07 6.5E+06 

5 2.4E+06 2.4E+06 1.2E+06 

10 6.3E+06 2.0E+10 1.4E+07 

15 1.8E+06 2.8E+06 2.0E+05 

 

 

5. Conclusions 

 

In this study, preliminary modeling for predicting 

electronic component RUL was performed with the goal 

of developing a failure prediction model for the RPS. It 

involves a series of processes including selecting 

artificial intelligence methods for RUL prediction, data 

processing, and selecting input variables. Because RPS 

failure data are currently being collected, open-source 

data was used in preliminary modeling to develop a 

failure prediction model. The open-source data utilized 

in this study are the IGBT accelerated aging dataset 

provided by NASA.  

RUL prediction for IGBT was performed using the 

LSTM with MC dropout method. In the case of input 

variables, environmental variables that can be obtained 

from actual NPPs, such as aging time, temperature, and 

voltage, were selected. In addition, the mean values and 

exponential moving average values for environmental 

variables were used. The prediction models were 

developed for 3 input variable groups. The performance 

of the prediction model developed using mean and 

exponential moving average values as additional input 

variables was superior to that of the model utilizing only 

environmental variables as input. Therefore, when 

developing a failure prediction model using RPS failure 

data in the future, we plan to use mean and exponential 

moving average values along with environmental 

variables as input variables. Additionally, we plan to 

apply more diverse dropout rates to compensate for the 

lower prediction performance as the failure time 

approaches. 
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