
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

Implementation of Continuous Diagnosis for Secondary Systems in Operating Nuclear
Power Plants

DongYun Cho a,b*, You-Rak Choib, Tae-Jin Parkb
aKorea National University of Science and Technology (UST), Daejeon, South Korea

bNuclear System Integrity Sensing & Diagnosis Division, Korea Atomic Energy Research Institute (KAERI), Daejeon,
South Korea

*Corresponding author: dycho@kaeri.re.kr

*Keywords : continuous diagnosis, cloud-native, nuclear power plant

1. Introduction

Ensuring the safe operation of nuclear power plants
(NPPs) remains one of the most important
considerations in South Korea. With ongoing efforts to
enhance safety measures of these facilities, many fault
diagnosis techniques are emerging [1]. In particular,
wireless sensor-based fault diagnosis is becoming
increasingly popular in the monitoring of the secondary
systems in NPPS due to its wide-area coverage.
However, relying solely on wireless sensors is not
sufficient for long-term diagnostics. To address this
issue, this proposes the implementation of continuous
diagnosis for secondary systems in operating NPPs,
leveraging a cloud-native solution to enhance
consistency and reliability.

2. Continuous Monitoring System

Current diagnosis systems in NPPS require on-site
personnel to quickly respond to potential system
failures. This dependence on human intervention makes
it difficult to respond to emerging problems in a timely
manner. However, these concerns can be addressed by
integrating a continuous monitoring system that
operates autonomously in the background. In this way,
the system is always on alert for any failures, enhancing
its capability for real-time data processing. Real-time
data processing is a crucial component in diagnosis to
promptly detect faults in secondary systems and ensure
efficient operation of NPPs.

2.1 Cloud Native Solution

Cloud-native solutions enable dynamic provisioning
of hardware resources and allow automation of tasks
such as initiating and managing applications through
programmable infrastructure.
In addition to automation, cloud-native solutions

provide auto-scaling capabilities [2], which adjust the
number of applications to fluctuating application
demands without human intervention. Moreover, in case
of system failure, cloud-native solutions can also
automatically restart the corresponding
application,minimizing downtime for the proposed

diagnosis system. For this reason, cloud-native
solutions are applied to the diagnosis system.

2.2 Cluster Design/Schematics

The continuous diagnosis system is designed to work
within a cloud-native solution as shown in Fig. 1. The
system begins by collecting wireless sensor data. The
data is analyzed using Fast Fourier Transform (FFT),
and is sent to Transmission Control Protocol (TCP)
servers. Each server has different responsibilities and
these are labeled as “RECV_SV”, “Process”, and
“GUI_SV.”

Fig. 1. Schematics of the proposed continuous diagnosis for
secondary systems in operating NPPs. Dotted line is a
boundary for Kubernetes.

The “RECV_SV” server collects wireless sensor
data. The “Process” server then takes the processed data
and inputs it into a machine learning model to calculate
the leakage probability. Finally, both the sensor data and
the calculated probabilities are delivered to the
“GUI_SV” server. The “GUI_SV” server is a
web-server that operates based on communication
between the server and users. When a user accesses the
user interface (UI), real-time sensor data in the
frequency domain is displayed in a graph. The fault
diagnosis system is mounted on Kubernetes, which is a
widely used cloud-native solution.
Kubernetes is based on clusters consisting of master

nodes and worker nodes. The master node continuously
monitors the services of the worker nodes, while the
worker nodes are responsible for running diagnosis



Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 9-10, 2024

applications. When one of the applications fails, the
worker node notifies the master node, and the master
node deploys a new copy of the application to the
available worker nodes. This disaster recovery feature
allows for continuous diagnosis.

3. Diagnosis System Implementation

The overall system within Kubernetes is developed
using the Python programming language, and each TCP
server is containerized using Docker to streamline
deployment and management. Three mini-PCs with
different specifications were prepared to ensure optimal
performance. The most robust mini PC was selected as
the master node. A private registry for Docker
containers is established on the master node to
efficiently distribute container applications to worker
nodes.
The Kubernetes UI in Fig. 2 provides administrators

with a comprehensive overview of the system’s
performance. For example, a pie chart displays the
status of each component within the Kubernetes cluster.
Deployment plays the most important role for the
proposed system, as it is responsible for the generation
and management of a predefined number of pods by the
master node. Each pod contains the diagnosis system
application and is distributed to the available worker
nodes.

Fig. 2. Kubernetes UI. It is easy to manage and create
necessary application deployment.

After the pod is created, the Kubernetes service
components are initialized. This configuration allows
pods containing different TCP servers to communicate
internally or externally as needed. For example, the
“Process” server performs internal data transfers, while
the “RECV_SV” and “GUI_SV” servers facilitate both
types of transfers.
To verify the successful integration of the diagnosis

system with Kubernetes, the functionality of the
“GUI_SV” server is tested using the collected wireless
sensor data. The proposed system was successfully
implemented as the graph was drawn on the “GUI_SV”
server. Fig. 3 shows the image of the graph.

Fig. 3. “GUI_SV” UI displays a real-time graph of sensor data
with leakage probabilities on the top corner.

Currently, the proposed system is being tested under
multi-user traffic scenarios. This is to prevent data loss
when multiple users try to observe graphs from the
same sensor.

4. Conclusions

In summary, integrating Kuberentes with wireless
sensor-based methods improves system consistency and
reliability when monitoring secondary systems in
operating NPPs. Through testing with collected wireless
sensor data, the proposed diagnosis system
demonstrates its ability to streamline the fault diagnosis
process and guarantee real-time data processing. This
system provides a promising solution to improve the
safety of NPPs. Future work will focus on further
testing and optimization of the proposed system for
different operating conditions of NPPs.

REFERENCES

[1] Korea Institute of S&T Evaluation and Planning
(KISTEP), KISTEP Report, 11-1721000-000597-01, 2011.
[2] G. Kulkarni, P. Khatawkar, and J. Gambhir, Cloud
Computing-Platform as Service, International Journal of
Engineering and Advanced Technology (IJEAT), Vol-1,
Issue-2, 2011.

ACKNOWLEDGEMENT

We acknowledge the Korean government, Ministry of Science
and ICT, for support (No. RS-2022-00144000).


