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1. Introduction 

 

As the demand for precision in reactor core physics 

analysis increases, considering both computational costs 

and the resources available on current mainstream 

computing platforms, pin-by-pin calculation [1] has 

gradually become a hot topic of research. This scheme 

can provide the pin-wise distributions of the parameters 

while eliminating errors caused by the assembly 

homogenization and pin-power reconstruction used in 

classical assembly-wise nodal methods. 

Besides, direct diffusion approximation could be no 

more suitable considering the optical thickness of the 

refined pin-wise mesh and heterogeneities in advanced 

reactor cores. Usually, the pin-by-pin solvers employ 

the SP3 transport approximation [2] to consider the 

transport effect with computational efficiency because 

the fully transport methods such as MOC still require a 

heavy computational burden.  

In this paper, the response relationships between 

partial currents were proposed based on a unified 

response matrix formulation for different methods, 

including the finite difference method (FDM), 

exponential function expansion method (EFEN) [3], 

and nodal expansion methods (NEM) [4]. On this basis, 

the various solutions of the pin-by-pin multi-group SP3 

equations have been easily achieved under the same 

calculation process by selecting the corresponding 

response coefficients. Additionally, we evaluated the 

accuracy and efficiency of the above-mentioned 

methods through the 2D KAIST benchmark problem.  

 

2. A Unified Response Matrix Formulation of Pin-

by-pin SP3 Calculation 

 

The fundamental of the response matrix solution of 

pin-by-pin SP3 calculation is the derivation of the 

relationship of outgoing currents with the linear 

combination of the incoming current and average flux. 

By substituting the relationship into the neutron balance 

equation, the solution of flux could be systematically 

obtained, and the partial currents could be updated in 

the inner iteration directly, eliminating the requirement 

of nonlinear iterations [5]. Another benefit from the in-

coming partial current-related formulation is the fact 

that the spatial mesh sweeping could employ a Jacobi 

sweeping (sweep all the meshes together) or the red-

black Gauss-Siedel sweeping (sweep half of the meshes 

together each inner iteration) easily, which will lead to 

the further efficient parallelization.  

 

2.1 Basic equations in the SP3 theory 

 

The traditional form of the SP3 equations with 

isotropic scattering is shown as follows: 
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If the following definitions are implemented 
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then, 0m =  and 2m =  equations in Eq. (1) can be 

written as the same form of diffusion equation as 

 2

,
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It should be noted that differently from the direct 

diffusion equation, the two diffusion-like equations of 

the SP3 theory (i.e., Eq.(3)) are coupled with each other. 

Besides, in the SP3 theory, the partial current and net 

current of different orders could be defined as 
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where the subscript u  stands for the surface in 

Cartesian coordinate, and , ,u x y z= ; the superscript o  

stands for the out-going partial current, i  stands for the 

in-coming partial current, and net  stands for the net 

current. And the neutron balance equations of each 

order could be described as 
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2.2 Response relationship in FDM 

 

In order to get the analytic solution of the diffusion-

like equations shown in Eq.(3), first, the straightforward 

FDM approach is implemented, which also plays the 

role of a preliminary example of the solution scheme. 

The key point of the FDM is the direct employment 

of Fick’s Law as 
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With this approximation, by substituting Eq.(6) into 

Eq.(4), it could be easy to obtain the following 

relationship as 
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where the coefficients ,

m

g u  and ,

m

g u  could be calculated 

with the given cross-sections and mesh length as 
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By substituting this response relationship Eq.(8) into 

the neutron balance equation Eq.(5), the balance 

equation becomes 
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Here in Eq.(9), the average flux is only related to the 

in-coming partial currents. With the initial ,

,

m i

g uJ
 , the 

average flux could be updated. The detailed solution 

process will be discussed in Section 2.5. 

 

2.3 Response relationship in EFEN 

 

Regarding FDM, since there is just a simple spatial 

assumption in space discretization, it could only obtain 

good accuracy when the mesh size is sufficiently small, 

resulting in it being a quite expansive method in the 

practical PWR neutronics analysis. 

Hence the nodal method is viewed as a good choice 

for the pin-by-pin SP3 calculation. Among them, the 

EFEN [6] (or called ACMFD [7]) method with the flat 

source and flat leakage approximation has been 

implemented in some well-developed pin-by-pin codes.  

With the flat source and leakage approximations, 

Eq.(3) is a typical Helmholtz Equation, therefore, the 

analytic solution of the transverse flux with the flat 

source and leakage approximations could be expressed 

as  
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With this analytic expression and the basic equations 

shown in Section 2.1, the response relationship in 

EFEN could be derived as 
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The expressions of the coefficients are shown in 

Eq.(12). It should be pointed out that with the limit  

0uh → , the coefficients in Eq.(12) would degenerate to 

those obtained from the FDM in Eq.(8) according to the 

L'Hôpital's rule. Hence the coefficient ,

m

g u
  can be 

considered as a spatial correction factor compared to the 

FDM method. 
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2.4 Response relationship in NEM 

 

Even though EFEN could achieve a significant 

improvement in accuracy than the FDM, due to its flat 

source approximation, it still meets challenges in 

systems with dramatic changes in neutron spectrum 

such as partially loaded MOX cores. 

One approach that could overcome this issue is the 

nodal expansion method. Usually, the transverse flux 

and the corresponding transverse source term in NEM 

employ the 4th-order expansion and the transverse 

leakage term employs the quadratic approximation as 
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In order to introduce the advantages of the response 

matrix method into NEM as well, the partial current 

response relationship of the NEM is derived from 

Eq.(13) with the weighted residual moment method as 
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The expressions of the coefficients are shown in 

APPENDIX. It could be noted here that differently 

from the FDM and EFEN, the out-going partial current 

of u +  surface ,

,

m o

g uJ
+  is not only related to the in-coming 

partial current of the same surface ,

,

m i

g uJ
+  , but also the 

in-coming partial current of the opposite surface ,

,

m i

g uJ
− .  

Besides, the influence of the expansion of the source 

term and leakage term is reflected in the moment term 

shown in ,

m

g u  and ,

m

g u . Hence, these coefficients could 

be viewed as high-order correction factors compared to 

the FDM and EFEN methods. 

 

2.5 Unified Response Matrix Formulation of SP3 

equations and solver development 

 

Similarly to Eq.(9), by substituting the EFEN 

response relationship Eq.(11) or the NEM response 
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relationship Eq.(14) into the neutron balance equation 

Eq.(5), it could be transformed into 
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or the response matrix formulation when we take Eq.(2) 

into account as  
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It demonstrates all FDM, EFEN, and NEM solutions 

of the SP3 equations could be unified under the same 

response matrix formulation as shown in Eq.(17).  

In the practical solution, under a given source term, 

the average flux could be updated with the initial in-

coming partial current. With the response relationships, 

the out-going partial current could be updated then. 

Considering the continuity of the partial currents, the 

out-going partial currents could be used to update the 

neighbor meshes’ in-coming partial currents. The above 

steps will be iterated in the inner iteration until 

convergence.  

Based on the solution process, the pin-by-pin SP3 

solvers have been developed. The one-node CMFD 

method is also implemented in the solver, which 

employs the partial-current-based analytic solution 

shown in Eq.(16) to solve the coarse mesh balance 

equations. Considering that the switch of different 

solvers only has an influence on the inner iteration, 

those solvers share the same outer iteration module and 

CMFD acceleration module, which are both 

independent of the inner iteration module.  

 

3. Verifications based on the 2D KAIST benchmark 

 

The 2D KAIST 3A benchmark problem [8] is used to 

evaluate different methods, which provides 7-group 

pin-cell homogenized cross sections, including UOX 

and MOX fuel rods, control rods, and poison rods. The 

core layout of the 2D KAIST 3A benchmark is shown 

in Fig. 1.  

Homogenized pin cell is divided into 1x1 and 2x2 

meshes per pin-cell respectively. The mesh-independent 

reference solution is calculated by FMFD with 10x10 

mesh per pin cell. The sensitivity analysis results on pin 

and assembly powers including eigenvalue by mesh 

divisions are given in Table I and Table II, while the 

detailed relative discrepancies of pin-wise power from 

the reference refined FDM values are shown in Fig. 2 

and Fig. 3. It could be noted that the scale of the color 

bar of FDM is different from the others in Fig. 2 and 

Fig. 3 due to its large values in the magnitude of 

discrepancy from the refined reference FDM solution. 

Besides, the calculation time and number of outer 

iterations are also shown in Table III. 

 
Fig. 1. Core layout of 2D KAIST 3A benchmark 

Table I: Relative discrepancies (%) of the pin and assembly 

powers with 1x1 mesh per pin-cell 

 

keff 

difference 
(pcm) 

Assembly-wise 

power 
Pin-wise power 

RMS MAX RMS MAX 

FDM 1600 12.07 25.54 12.80 34.07 

EFEN -30 0.89 1.57 1.17 4.39 

NEM 5 0.08 0.21 0.11 0.52 

Table II: Relative discrepancies (%) of the pin and 

assembly powers with 2x2 meshes per pin-cell  

 

keff 

difference 

(pcm) 

Assembly-wise 

power 
Pin-wise power 

RMS MAX RMS MAX 

FDM 542 4.33 9.25 4.59 11.94 

EFEN -2 0.25 0.43 0.35 1.15 

NEM -18 0.15 0.31 0.16 0.47 

Table III: Computation cost of various methods 

 Calculation time 
Total number of 
outer iterations 

FDM (1x1) 34.578s 26 

EFEN (1x1) 42.673s 24 

NEM (1x1) 87.905s 26 

FDM (2x2) 201.246s 30 

EFEN (2x2) 246.494s 26 

NEM (2x2) 400.460s 26 

 

It could be found from the results that the FDM 

solver is not suitable for the strong heterogeneity ARI 

case because the RMS of assembly power and pin 

power discrepancies are both about 5% even for the 2x2 

calculation.  

For the 1x1 EFEN calculation, which has the 

common mesh division in the pin-by-pin calculation, 

the RMS of assembly power discrepancies is less than 

1%. However, the maximum discrepancy in pin power 

distribution is 4.39%, which is located at the boundary 

of the fuel assembly as shown in Fig. 2 where the flux 

spectrum changes dramatically. 

As expected, the NEM solver could get the most 

accurate results for the ARI case. RMS of pin-wise 

power discrepancies is 0.11% and the maximum pin-

wise power discrepancy is 0.52% for the 1x1 NEM 
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calculation, which is also better than the 2x2 EFEN 

calculation. With the employment of the refined 2x2 

mesh, the accuracy could be improved as expected.  

It could be indicated that the NEM method requires 

more computation time than EFEN since more 

coefficients are required for the solution. However, 

considering the accuracy, the 1x1 NEM is also more 

efficient than 2x2 EFEN, which could reduce the 

calculation time from 246s to 88s. 

 
Fig. 2. Relative pin-power discrepancies (1x1 mesh per pin-

cell) 

 
Fig. 3. Relative pin-power discrepancies (2x2 mesh per pin-

cell) 

 

4. Conclusions 

 

In this paper, a partial-current-based unified response 

matrix formulation is employed to solve the pin-by-pin 

SP3 equations with various methods including FDM, 

EFEN, and NEM. Benefiting from the unified solution 

process, the different methods could be implemented 

and switched easily and share the same outer iteration 

module and CMFD acceleration module. 

The heterogenous 2D KAIST benchmark problem 

was used to evaluate the accuracy and efficiency of the 

solvers using the different methods. The comparison 

demonstrates that for the strong heterogeneous case, the 

NEM solver could provide the most accurate results due 

to the high-order source and leakage expansion 

compared to the EFEN and FDM solver. The RMS and 

maximum value of pin-power discrepancies of 1x1 

NEM solver are both less than 1%, while EFEN 

requires at least 2x2 mesh per pin-cell with three times 

longer computing than the time of 1x1 NEM to achieve 

such accuracy. 
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APPENDIX 

The coefficients of the NEM approach are expressed as 
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