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1. Introduction 

 

Recently, as the demand for integrating deep learning 

technology into the anomaly detection of plant pipelines 

has risen, there is a growing emphasis on collecting 

high-quality data from operational plants for training 

deep learning models. However, in actual plant 

environments, anomalies rarely occur, making it 

challenging to collect data on abnormal conditions. 

Additionally, creating artificial abnormal conditions in 

real plant environments is difficult due to the high 

probability of significant damage occurring when 

anomalies do happen. For these reasons, experimental 

data is collected in a testbed environment that simulates 

real plant conditions for the development of deep 

learning models. Furthermore, research on applying 

deep learning models developed in the testbed to real-

world scenarios has become increasingly important. 

Recently, there have been numerous efforts to 

develop deep learning algorithms that can be utilized in 

environments where obtaining real-world data is 

challenging, by simulating real environment data using 

simulators. However, when using self-developed 

sensors instead of commercially available sensors to 

collect time-series data, simulating data using simulators 

becomes very challenging.  

Therefore, there is a need to develop an adaptable 

deep learning algorithm for dynamic environments 

based entirely on collected data. This paper introduces 

research on an adaptable deep learning algorithm for 

dynamic environments using CycleGAN. The algorithm 

utilizes CycleGAN to learn a transformation from 

normal state data to leak state data and generate leak 

state data from normal state data in a new environment. 

  

 

2. Necessity of Adaptable Deep Learning Algorithm 

for Dynamic Environments 

 

The Korea Atomic Energy Research Institute 

(KAERI) is currently developing a wireless acoustic 

sensor module designed to detect micro-leaks in plant 

pipelines [1]. Once the sensor collects data, it undergoes 

several signal preprocessing steps and is subsequently 

analyzed using a deep learning model to identify the 

presence of leaks in the pipeline. In this process, data 

are collected in the frequency domain by the sensor 

module. 

When training the deep learning model with learning 

data collected in a testbed located in the laboratory, 

validation in different environments exposes its 

incapacity to detect leaks. This is attributed to 

significant variations in the collected data based on the 

collection environment (time, temperature, ambient 

conditions, etc.), as illustrated in Figure 1. In Figure 1, 

there are differences even among normal state data (blue 

solid line) depending on the environment, as well as 

variations among leak state data (orange dashed line). 

Furthermore, there are differences between normal state 

data and leak state data, attributed to variations in 

factors such as leak pressure and the distance between 

the leakage area and the sensor. 

 

 
(a) Environment A 

 
(b) Environment B 

 
(c) Environment C 

 
(d) Environment D 

Fig. 1. Data collected in various environments (A~D) 

using a wireless acoustic sensor module. The average 

data collected over 10 minutes are illustrated. The 

orange dashed line represents data collected during a 

leak state, while the blue solid line represents data 

collected during a normal state. 

 

Table I represents the classification accuracy of deep 

learning model training and inference using data in the 

four environments shown in Figure 1. Supervised 

learning techniques, specifically classification methods, 

were employed for training deep learning models.  

As shown in Table I, classification performance 

decreases when the training environment differs from 

the inference environment, except in the case where a 

model trained with data from environment B is inferred 

with data from environment D. In these cases, the 
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classification models, instead of randomly determining 

normal or leak during inference, consistently classified 

all data as either entirely normal or entirely leak. The 

data from environment C showed lower inference 

performance compared to other environments, as the 

number of normal state data samples and leak state data 

samples had an approximate ratio of 2:1. 

 

Table I. Classification accuracy (%) in various 

collecting environments (A~D). The classification 

performance was measured by varying the environments 

for both training data collection and inference data 

collection. 

Training 

Inference 
A B C D 

A 99.92 50.25 49.32 49.38 

B 46.06 99.70 54.43 46.10 

C 32.35 32.35 99.28 31.80 

D 46.94 99.93 51.70 99.91 

 

3. Adaptable Deep Learning Algorithm for Dynamic 

Environments using CycleGAN 

 

CycleGAN [2] is a model derived from Generative 

Adversarial Network (GAN) [3], designed to learn the 

translation of an image from a source domain to a target 

domain in the absence of paired examples. While GAN 

requires paired data for training, CycleGAN can be 

trained even when paired data is not available.  

Generally, collecting normal state data is easier than 

collecting leaked state data. Therefore, the objective is 

to use GAN to learn transformation maps from normal 

state data to leak state data. This allows the generation 

of leak state data from normal state data in a new 

environment, enabling training using classification 

methods. As the normal state data and leak state data are 

not in a 1:1 correspondence, CycleGAN, capable of 

learning from unpaired data, is employed to train the 

transformation. 

 

 
Fig. 2. Proposed CycleGAN training procedure. 

  

The algorithm proposed in this paper is as follows: 

 

1. As illustrated in Figure 2, normal and leak state 

data collected across various environments are 

paired according to their respective 

environmental conditions.  It is not necessary for 

the number of samples of normal and leak state 

data from the same environment to be equal. 

 

2. Train generators and discriminators of 

CycleGAN using the dataset to obtain the 

transformation from the normal state to leak state, 

denoted as f. It is essential to train pairs of 

normal state data and leaked state data collected 

from the same environment. 

3. Generate leak state data by applying the 

transformation f to the collected normal state 

data in a new environment. The number of 

generated leaked state data samples equals the 

number of normal state data samples in the new 

environment. 

4. Train a classification model for the new 

environment using the normal state data and 

generated leak state data in step 3. Utilize this 

model as the leak detection model in the new 

environment. 

 
4. Experimental Results 

 

The algorithm proposed in Chapter 3 was 

implemented using Python 3.8 and PyTorch 1.12.1. All 

generators and discriminators within the CycleGAN 

architecture adopt a 1D-CNN structure, with the 

generators being modified versions of the U-Net 

structure. The training process utilized data collected 

from two environments, A and C of Figure 1. The 

trained transformation was validated using data 

collected from environment B. The number of data 

samples used for training in each environment is 

detailed below in Table II. 

 

Table II. Environments and the quantity of data 

samples utilized in CycleGAN training. 

 Environment A Environment B 

Normal 1001 778 

Leak 1001 363 

 

a. Validation of Trained Transformation using 

Training Environment Data (Environment A) 

 

In Figure 3, the first row represents the leak state data 

from the environment A, and the second row shows the 

leak state data generated from the normal state data in 

environment A and the trained transformation. In the 

figure, the x-axis represents Frequency, and the y-axis 

represents amplitude values. As shown in Figure 3, the 

collected leak state data and the generated leak state 

data are similar. 

Figure 4 illustrates the clustering results of collected 

leak data and generated leak data using t-distributed 

Stochastic Neighbor Embedding (t-SNE) [4]. If the 

generated data is well-created and indistinguishable 

from real data, the two sets of data should not form 

separate clusters but rather be interspersed. In Figure 4, 
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the two sets of data are intermingled, confirming that the 

generated data is well-produced. 

 

 
 

Fig. 3. The first row represents the leak state data 

from the environment A, and the second row shows the 

leak state data generated from the normal state data in 

environment A and the trained transformation 

 

 

 

 
Fig. 4. Clustering results of collected leak data and 

generated leak data using t-SNE. 

 

b. Validation of Trained Transformation using 

Non-Training Environment Data (Environment 

B) 

 

In Figure 5, the first row represents the leak state data 

from the environment B, and the second row shows the 

leak state data generated from the normal state data in 

environment B. In Figure 5, the collected leak state data 

and the generated leak state data are different. 

 

 

 
Fig. 5. The first row represents the leak state data 

from the environment B, and the second row shows the 

leak state data generated from the normal state data in 

environment B. 

 

Through the experiments, it was confirmed that the 

leak data from the environment used for training was 

well-generated. However, leak data from an 

environment not used for training was observed not to 

be as well-generated. 

 

 

5. Conclusion 

 

In this paper, we proposed an adaptable deep learning 

algorithm for dynamic environments using CycleGAN. 

The goal was to learn transformation from normal state 

data to leak state data using data from various 

environments, and subsequently use this transformation 

to generate leak state data from normal state data in a 

new environment. Finally, we aimed to learn a 

classification model for the new environment using the 

generated leak state data and normal state data. From 

experiments, it was verified that leak state data was 

well-generated in the environment used for training; 

however, it was not as well-generated in an environment 

not used for training. In the experiments, CycleGAN 

was trained using data collected from two environments 

only. However, it is necessary to train the 

transformation using data collected from a more 

extensive range of environments. Furthermore, it is 

suggested that the training of the transformation could 

be further improved by incorporating factors that 

distinguish the data collection environment, enabling the 

transformation to learn information about the 

environment.  
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