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1. Introduction 

 
Once radioactive material is released from a Nuclear 

Power Plant (NPP) during an accident, it is crucial to 

understand the behavior of the radioactive plume in real 

time. It serves as an important decision-making factor in 

establishing and implementing resident protection 

measures in the early stages of an accident. However, it 

is difficult to understand the behavior of radioactive 

plumes in real-time based on actual measurement data. 

In a previous study, Long Short-Term Memory 

(LSTM), a deep learning model, was applied to an 

atmospheric diffusion model to predict the diffusion of 

radioactive materials from NPP [1]. However, this 

model has limitations in real-time applications when an 

actual accident occurred. The study using artificial 

intelligence to predict radioactive source positions was 

also conducted. For example, an optical fiber-based 

system that utilizes machine learning techniques to find 

the location of a radiation source in one dimension was 

developed [2]. This system is limited by the requirement 

to position the radioactive source directly beneath the 

optical fiber. In addition, several studies have utilized 

drones equipped with radiation detectors to measure and 

visualize contaminated areas from the air [3, 4]. These 

studies mainly focus on visualizing or inverse modeling 

contaminated areas. In that, there are limitations in 

accurately determining the direction and location of 

unknown sources in the air. 

Previous studies provide an important foundation for 

predicting the diffusion of radioactive plumes and 

developing systems for tracking the position of radiation 

sources. However, further study using actual real-time 

measurement data is needed to assess their applicability. 

In this study, as a preliminary study for predicting the 

location of a radiation source, we conducted to predict 

the direction of the radiation source using two CZT 

sensors that can be mounted on a drone. Data measured 

using two CZTs were set as input data, and the angle of 

the source from the detection device was set as output 

data. Nonlinear regression analysis and an artificial 

neural network model were employed for prediction. 

 

2. Methods and Results 

 

2.1 Experimental data acquisition and generation 

 

The experimental setup required to collect the data 

for learning are shown in Fig. 1. Two CZT sensors are 

placed at a 90-degree angle, and the data measured from 

the two CZTs were collected and processed through a 

detection device and transmitted to the PC. Cs-137 

source was used for the experiment. The source was 

placed at distances of 0 cm, 3.5 cm, and 7 cm from the 

CZT, respectively, and its position was changed at 15-

degree intervals from the detection device. Each 

position was measured once, and a total of 21 

measurement data were collected. 

 

 

Fig. 1. Experimental setup for collecting measurement 

data. 

 

In order to train a machine learning model, a 

sufficiently large amount of data is needed. Statistically 

acceptable data were generated and used for model 

learning [5]. When the number of measurements 

increases, radioactivity measurements follow the 

Poisson distribution, and it approximates the normal 

distribution if the count value is large. In the Poisson 

distribution, the variance is equal to the mean, and if the 

count value ‘n’ is obtained by measuring once, ‘n’ can 

be considered the mean [6]. Since 95.45% exists within 

the range of the mean ± 2 sigma, random data 

distributed within the range was generated for learning 

at each position. The number of data per position, 

including random data, is 100, and the total data used 

for learning is 2,100. 

 

2.2 Machine learning method 

 

The measured values of CZT #1 and CZT #2 are used 

as input, and the angles between the detection device 

and radioactive source is used as the output value. 

Learning was divided into three categories based on the 

distance from the detection device. For learning, input 
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data was converted into ratios for each dataset. For 

example, if count values measured by two CZTs are 

9000 and 1000, respectively, each value was converted 

to 0.9 and 0.1, which are divided by the sum of the two 

values. Additionally, for normalization, the maximum 

and minimum values of each column were set to 1 and 0, 

respectively, and then the data were converted to a ratio 

between 0 and 1. The training data and validation data 

were used in an 8:2 ratio. For prediction, the Keras 

library of the Python program, a nonlinear regression 

analysis model, was used. 

 

2.3 Prediction results 

 

Figure 2 shows the change in the loss for training and 

validation data as the number of epochs increases. The 

loss means the difference between the predicted value 

and the actual value. The smaller the loss, the closer the 

predicted value is to the actual value. In an ideal 

scenario, the loss decreases as the epoch progresses. 

Loss values at each distance are 2.97, 13.21, and 46.98. 

 

  
(a) 0 cm (b) 3.5 cm 

 
(c) 7 cm 

Fig. 2. Loss functions of training and validation data by 

increasing epoch. 

 

  
(a) 0 cm (b) 3.5 cm 

 
(c) 7 cm 

Fig. 3. Evaluation results of the machine learning model. 

Table I: Comparison of the actual and predicted degree 

by distances 

Distance 

(cm) 

Degree (°) 

Actuality Prediction Difference 

0 0 -0.79 0.79 

15 13.82 1.18 

30 33.01 3.01 

45 47.12 2.12 

60 59.61 0.37 

75 74.12 0.88 

90 90.12 0.12 

3.5 0 -2.34 2.34 

15 17.10 2.10 

30 29.08 0.92 

45 49.38 4.38 

60 56.54 3.46 

75 77.38 2.38 

90 86.33 3.67 

7 0 5.99 5.99 

15 14.02 0.98 

30 28.92 1.08 

45 34.86 10.14 

60 63.49 3.49 

75 75.50 0.50 

90 88.48 1.52 

 

Figure 3 and Table I present the results of comparing 

the values predicted by the model with the actual values. 

In Fig. 3, the red asterisk represents the actual value, the 

blue dot represents the average of the predicted values, 

and the blue line represents the maximum/minimum of 

the predicted values. In Table I, "Prediction" refers to 

the mean, while "Difference" refers to the absolute 

value of the difference between the actual value and the 

predicted value. As shown in the figure and table, the 

farther the distance from the detection device, the larger 

the deviation of the predicted value. Additionally, when 

the distance is 7 cm, there is a slight difference between 

the actual and predicted values at 0 and 45 degrees. 

 

3. Conclusions 

 

In this study, two CZT sensors were placed at 90 

degrees and the radioactive source direction was 

predicted using data from measuring radioactive source 

at various positions. The Keras library of the Python 

program was used to learn the model. The input data are 

the measurements of CZT #1 and #2, and the output 

data is the angle between the source and detector. 

As a result, it was confirmed that although the 

deviation of the predicted value increased as the 

distance between the source and the detector increased, 

it was possible to predict the source direction in 2D 

through machine learning. In this study, synthetic data 

was used to confirm the applicability of machine 

learning. However, for future study, we plan to utilize 
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actual measurement data to conduct detailed study on 

the source positions and directions.  
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