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1. Introduction 
 

In the case of severe accident, exposure of radioactive 
nuclides is the ultimate element of harm on human and 
environment. Therefore, it is important to estimate 
source term information based on given information near 
plant. Among them, method of estimating source term 
using gamma dose rate has recently made significant 
progress[1]. Inverse estimation technologies 
incorporating artificial intelligence (AI) techniques [2, 3], 
ensemble-based methodologies [4], and others have 
emerged. However, these studies have drawbacks such 
as inadequate consideration of observation uncertainties 
or high computation time. 

In this paper, we proposed source term estimation 
method based on invertible neural network, inspired by 
structure of generative AI. The results showed that it is 
possible to provide a mathematically feasible estimation 
range for the problem of inaccurate conditions induced 
by the uncertainty in gamma dose measurements. This 
has the advantage of being more scalable than existing 
optimization-based inverse problem solutions, as it does 
not require extensive forward computation or 
differentiation. Moreover, by pre-training neural 
networks, it is possible to achieve rapid estimation with 
lower computational time in emergency situations. 
Additionally, unlike other AI methods, the approach 
using this technique facilitates decision-making by 
offering an accessible and accurate estimation range for 
measurement uncertainty. 

 
2. Methodology 

 
Estimating source term is kind of inverse problem. In 

this section, our Bayesian viewpoint about source term 
estimation and invertible neural network, AI model to 
solve this problem are introduced. Lastly, to validate 
invertible neural network (INN), approximate Bayesian 
computation (ABC) algorithm is introduced. 
 
2.1. Bayesian Inverse Problem of Source Term Estimation 
  

Inverse problem is aiming to find 𝒙 for a given 𝒚 in 
the equation 𝑓(𝒙) = 𝒚. In this study, the atmospheric 
dispersion process corresponds to the forward function 𝑓, 
consequence of dispersion process corresponds to 𝒚, and 
emissions of radionuclides correspond to 𝒙. In addition, 
meteorological information plays a different role than 𝒙 
and 𝒚, serving as auxiliary input 𝒂 provided in both the 
atmospheric dispersion process and the source term 

estimation process. This can be expressed in the 
following equation. 

 

 Forward	process	 ∶ 𝑓				(𝒙; 𝒂)	 = 𝒚	 
Inverse	problem	 ∶ 𝑓"#(𝒚; 𝒂) = 𝒙 (1) 

 
This kind of inverse problem setting is widely adopted 

by previous studies about source term estimation, and it 
is valid approach when the forward process 𝑓 is bijective 
function.  However, in the process of estimating the 
source term, there is often an incomplete determination 
of 𝑥 due to the lack of data for the measured data 𝑦$%&, 
and uncertainty of measuring 𝒚𝒐𝒃𝒔 = 𝒚 + 𝝐 . In such 
cases, function 𝑓 is not bijective thus it becomes an ill-
posed inverse problem. Accordingly, the goal should not 
be to accurately determine 𝒙  as a specific value, but 
rather to represent it as a probability distribution. 

This probability is referred to as Bayesian probability, 
where the prior distribution 𝑝(	∙	)  calculated based on 
prior information is updated for the given data 𝑦$%&  to 
infer the posterior probability distribution 𝑝(	∙ 	 |𝒚𝒐𝒃𝒔).  

 

 
𝑝(	∙	)
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	 →
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(2) 

 
Therefore, on this paper we treated source term 

estimation problem as Bayesian Inverse Problem. 
 

2.2. Invertible Neural Network 
 

Invertible Neural Networks (INN) are neural networks 
designed based on the generative AI to solve the inverse 
function problem[5]. Generative AI aims to generate new 
forms of data, such as text or images, by learning vast 
amounts of identical type of data to emulate their 
distribution. Subsequently, by sampling based on the 
emulated distribution, it is possible to generate data of 
the same form. Applying this approach to the Bayesian 
Inverse Problem (2) can be described as follows. 
 

 
Given	training	data		
[	𝒙𝒊, 𝒂𝒊, 𝒚𝒊	]	with	𝑦< = 𝑓(𝒙𝒊; 𝒂𝒊)	, 

minimize
=	

𝐷{	𝑝>>$	 (	∙	; 𝒚𝒊, 𝒂𝒊), 𝑝(	∙ |𝒚𝒊, 𝒂𝒊)} 
(3) 

 
Here, the function 𝐷 represents a statistical distance, 

and a smaller value indicates that the two distributions 
are more similar. Next, the subscript 𝑖 corresponds to the 
indices of the training data, and the statistical distance is 
calculated based on the distribution generated by these 
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multiple training data. 	𝑝>>$	 (	∙	; 𝒚𝒊, 𝒂𝒊)  represents the 
distribution generated by the neural network 𝑁𝑁= 
conditioned with  𝒚𝒊  and auxiliary input 𝒂𝒊 . 𝜽  is 
parameter of 𝑁𝑁= those changes over training process.  
Finally, the minimizing process, which is referred as 
training process is finding 𝜽  that best aligns the 
distribution 𝑝>>$	 (	∙	; 𝒚𝒊, 𝒂𝒊)  generated by the neural 
network with 	𝑝(	∙ 	|𝒚𝒊, 𝒂𝒊) , the actual posterior 
probability distribution. 

For the neural network to produce such a distribution 
as its output, the structure should be designed to allow 
the switching of input and output directions. INN also 
has a forward mode 𝑁𝑁?  and an inverse mode 𝑁𝑁@ , 
satisfying the following relationship. 

 

 𝑁𝑁?(𝒙; 𝒚, 𝒂) = 𝒛 
𝑁𝑁@	(𝒛; 𝒚, 𝒂) = 𝒙 (4) 

 
Using this, it is possible to emulate a specific 

distribution when training as following manner. 
 

 

with					𝒙~𝑝(	∙	),			𝒚 = 𝑓(𝒙; 𝒂)	
if			𝑁𝑁?(𝒙; 	𝒚, 𝒂)~	𝑁(0, 1),	
then	with	sampled,			𝒛	~	𝑁(0, 1),	
𝑁𝑁@(𝒛; 	𝒚, 𝒂)	~	𝑝(𝒙	|	𝒚, 𝒂) 

(5) 

 
In conclusion, whole training process of INN for 

inverse problem is summarized as followed. 
 

 minimize
=

𝐷	{	𝑝>>$&(𝒙𝒊	;𝒚𝒊	,𝒂𝒊)(∙), 𝑁(0,1)} (6) 
 

Here, 𝑝>>𝜽𝑭(𝒙𝒊	;𝒚𝒊	,𝒂𝒊)  represents the distribution 
generated by the output 	𝑁𝑁𝜽?(𝒙𝒊	; 𝒚𝒊	, 𝒂𝒊) over data 𝒊. 
 
2.3. Approximate Bayesian Computation 
 

To validate the results generated by INN, it is 
important to know the actual posterior distribution. 
However, in cases where the inverse problem cannot be 
analytically solved, it is impossible to know such a 
posterior distribution. Therefore, in this study, we used 
Approximate Bayesian Computation (ABC)[6] as a 
method to emulate such posterior probability 
distributions. 

ABC is a kind of Monte Carlo technique that can 
sample very similarly to the posterior distribution. About 
inverse problem represented as (2), to a sample 𝒙 
sampled from the prior probability distribution 𝑝(𝒙), if 
only 𝒙  satisfying 𝑓(𝒙; 𝒂) = 𝒚  is accepted, it becomes 
equivalent to sampling from the posterior probability 
distribution 𝑝(𝑥|𝑦). However, in the actual source term 
estimation process, what is given is not the exact value 𝒚 
but an observed value that added error, 𝒚𝒐𝒃𝒔 = 𝒚 + 𝝐; as 
mentioned before that’s one of the reasons why it 
becomes ill-posed and Bayesian Inverse Problem (2). 
Thus, we can sample from posterior distribution 

𝑝(𝒙|𝒚𝒐𝒃𝒔, 𝒂)  considering the relative error 𝝈  of the 
observation by following acceptance condition. 

 

 Y
𝑓(𝒙; 𝒂) − 𝒚𝒐𝒃𝒔

𝑓(𝒙; 𝒂) Y < 𝜎 (8) 

 
Following table is Pseudo code represents sampling 

number of 𝑛&IJKLM  samples with observation 𝒚𝒐𝒃𝒔 , 
observation relative error 𝝈 , and meteorological 
condition 𝒂 . The sampled 𝒙  is stored on the list 
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟_𝑙𝑖𝑠𝑡 and this is output at last stage. 

 
Table 1: Pseudo code of ABC 

(Input the state and initialization) 
Set 𝑛!"#$%& and 𝜎 
Input 𝑎 and 𝑦'(! 
Initialize posterior_list= [ ] 
 
(Sampling) 
While (size of posterior_list) <𝑛!"#$%& : 

Sample 𝑥 from prior distribution 𝑝(𝑥) 
Calculate 𝑦)"% = 𝑓(𝑥; 𝑎) 
 

(Accept condition) 
If  2*(,;")/0!"#*(,;") 2 < 𝜎 : 

Stack 𝑦 on posterior_list 
Output posterior_list 

 
3. Problem settings 

 
In this study, the forward process 𝑓  of the inverse 

problem consists mainly of the atmospheric dispersion of 
the source term and the measurement of environmental 
radiation exposure resulting from it. Among these 
processes, the atmospheric dispersion process is modeled 
using the Gaussian Plume Model. This is the most basic 
model and is a widely used model in the Nuclear 
Regulatory Commission (NRC) for the probabilistic 
safety assessment in level 3 [7]. 

Additionally, in the estimation problem of the source 
term, it is necessary to consider how the distributed point 
source manifests at a given location as a measured value. 
In this case, the environmental gamma dose has been set 
as the measurement factor. The impact of the radioactive 
source is manifested in indicators such as surface 
deposition quantity and the concentration of 
radionuclides in the air. However, obtaining such 
information in a short period is impractical for 
emergency response. On the other hand, gamma dose can 
be obtained in real-time from existing environmental 
radiation measurement stations, making it relatively 
suitable for emergency response. 

 Lastly, since we set Bayesian Inverse Problem caused 
by observation error 𝝈, it should be added on gamma 
dose measurement. In conclusion, the whole process to 
make 𝒙 and 𝒚 can be summarized as followed. 

 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 9-10, 2024 

 
 

 

𝒙
12345	7589	
59:;;:2<	8=75	

	 → 𝑔(𝑥; 	𝑎)
>=3;;:=<	?@39

92A5@

		

→ γ9g(x)<
B<C:82<95<7=@
D=99=	A2;5
95=;38595<7

	 → 𝐲 = γ9g(x)< + ϵ
EAA:<D

2F;58C=7:2<
58828

	 (9) 

 
Therefore, the function 𝑓 for inverse problem can be 

represented as 𝒇(𝒙) = 𝜸d𝒈(𝒙)f + 𝝐 . 
 

4. Results and discussion 
 

We generated 800,000 datasets based on section 3. 
Among them, 700,000 is for training, and 100,000 is for 
testing. Each data on dataset consists of source term 
emission rate 𝒙 , meteorological condition 𝒂 , and 
observed gamma dose rate 𝑦$%&. Since these datasets are 
generated for inverse problem, prior distribution 𝑝(𝒙) 
and are set as table 2. 

 
Table 2: Input and output range of estimation model 

Input 𝒙 Emission rate of 
each nuclide 
𝑟(1~11)  

𝑄!~𝑈)0, 100𝑞!,#$%&-	[bq] 

Auxiliary 
input 𝒂 

Wind speed  𝑣~𝑈(1, 12)	[m/s] 
Gustiness 
atmospheric 
stability  

𝐺𝑐𝑙𝑎𝑠𝑠	(𝐵, 𝐶, 𝐷, 𝐸)
∈ {[1,0,0,0], [0,1,0,0],	
	[0,0,1,0], [0,0,0,1]} 

Effective emit 
height   

ℎ~𝑈(0,60)		[m] 

Observation 
location of each 
station 𝑠(1~40) 

H
𝑥	~	𝑈(2000,10000)
𝑦	~	𝑈(0,1000)										
𝑧	~	𝑈(0,100)												

 

Output 𝒚 Observed gamma 
dose rate of each 
station	𝑠(1~40) 

[𝑦'()]) 
= 𝛾Dose# × (1 + 𝜖)  
with 𝝐~	𝑈(−𝜎, 𝜎) 

 
Here, 𝑞N,/0:O. It is emission rate value based on level 3 

PSA in case of source term category (STC) 3 [8]. 𝑈(𝑎, 𝑏) 
denotes a uniform distribution between 𝑎 and 𝑏.  

Gustiness atmospheric stability is categorized by B, C, 
D, E and one-hot encoded to each elementary vector in 
4-diminsional space. Wind direction is set as +𝑥 
direction. Lastly, observation relative error 𝜖 has range 
from −𝜎 to 𝜎, is set  as  5%. 

About 1 random data in 100,000 test data, we depicted 
in Fig. 1 the posterior distribution simulated using ABC 
and the one calculated by the proposed INN-based model 
in this study. Since The proposed estimation model does 
not represent the source term to be estimated as a single 
value, but rather presents it as a posterior probability 
distribution corresponding to a predetermined gamma 
dose rate observation error. Therefore, it is most 
appropriate to compare ABC with the shape. 

 One notable aspect is the impact of measurement 
relative errors, making it challenging to predict isotopes 
other than the main isotope Kr-88. Even with a 5% error, 
the range of Xe-133 was slightly reduced under certain 
conditions, but the uncertainty was significantly high. 
This is applicable not only to artificial intelligence 
models but also to the output of the posterior distribution 

sampled by ABC. It implies that the influence of 
measurement uncertainty on defective conditions for the 
inverse problem of source term estimation is indeed 
substantial, and this uncertainty represents the unique 
mathematical characteristics of the inverse problem of 
source term estimation. 
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Fig. 1. Prior(grey) and observation updated posterior(colored) 
distribution calculated by ABC(blue) and INN(orange) of 11 
radionuclides. 

 
Simultaneously, it is observed that the posterior 

probability distribution provided by the INN-based 
model closely resembles the posterior probability 
distribution calculated by ABC. Considering the 
similarity of the results of ABC to mathematical 
solutions for the given ill-posed inverse problem, it can 
be inferred that the model operates effectively. 
Furthermore, while ABC required computations for tens 
of billions of randomly generated samples to draw the 
posterior distribution, the INN-based model performed 
only the necessary operations for precisely 20000 
samples extracted from a standard normal distribution. 
 

5. Conclusions 
 
In this study, source term estimating problem was 

formulated as a Bayesian Inverse Problem considering 
measurement errors. An approach based on INN was 
employed to solve such problems. The results showed 
that the posterior distribution obtained through INNs 
closely matched the accessible estimation range 
corresponding to the specified gamma dose rate 
observation errors. 

This source term estimation method based on INN, 
unlike optimization-based methods, includes no forward 
operations in the solving process, making it applicable to 
advanced atmospheric dispersion models. Expectations 
include rapid operation during emergencies through pre-
training. Furthermore, compared to existing artificial 
intelligence-based techniques, it offers an advantage in 
understanding emergency situations and responding 
effectively due to considering realistic measurement 
errors in the accessible estimation range. 
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