
Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

Seismic Signal Upsampling with Integration of Interpolation and LSTM 

 
SeongJin Jeon a*, JeongBeom Seo a,, Jin Koo Lee a, 

aKITValley co., Ltd., 68, Digital-ro 9-gil, Geumcheon-gu, Seoul, Korea 
*Corresponding author: hsksks7521@gmail.com 

 

*Keywords: Upsampling, Interpolation, LSTM  

 

1.Introduction  

 

As of February 13, 2024, the total number of 

accelerometers installed by the National Earthquake 

Comprehensive Information System (NECIS) of the 

Korea Meteorological Administration (KMA) is 289, 

collecting data at sampling rates of 20 and 100. Initially, 

seismic data were recorded at a sampling rate of 20, 

suitable for determining the magnitude and location of 

earthquakes. With advancements in data transmission 

speeds and storage capacities, data are now also recorded 

at a sampling rate of 100. 

To create models capable of distinguishing between P 

waves, S waves, and noise, it is essential to utilize high-

frequency data from nearby strong seismic events. High 

frequencies attenuate more effectively over distance, 

meaning data from distant sources become diminished. 

However, Korea's predominant granite underground 

composition minimally affects attenuation, making local 

earthquake data particularly valuable for leveraging 

high-frequency information. 

According to Nyquist's theorem [1], a sampling rate of 

100 can only capture frequencies up to 50 Hz, limiting 

our ability to analyze higher-frequency seismic data. 

High-frequency data above 50 Hz are crucial for 

improving model accuracy in identifying seismic wave 

characteristics. By enhancing the sampling rate to 200, 

we can secure data in the 50 to 100 Hz range, 

significantly improving our model's ability to 

differentiate seismic wave types. Such refined models 

are instrumental in minimizing damage to critical 

infrastructure, including nuclear power plants, by 

providing more precise predictions. 

Currently, Korea records seismic data at a sampling 

rate of 100, which restricts visibility into the higher-

frequency spectrum essential for detailed analysis. Our 

research aims to elevate this rate to 200, enhancing 

model performance by incorporating a broader range of 

high-frequency data.  

Interpolation is a method for upsampling seismic 

signals to estimate values between given data points. 

Linear Interpolation, which calculates the average of two 

adjacent values, is most effective when the sampling rate 

is doubled. However, the simplicity of linear 

interpolation limits the accuracy of seismic signal 

upsampling, necessitating the creation of a model that 

offers more precise predictions. 

To address this limitation, we turn to Deep Learning. 

The RNN family of models, particularly the LSTM [2] 

has shown exceptional performance in predicting time 

series data, such as seismic waves, due to its ability to 

handle long-term dependencies with high accuracy. 

We developed a new model by integrating Linear 

Interpolation and LSTM, referred to as 'Linear 

Interpolation + LSTM'. Initially, we created interpolated 

data at a sampling rate of 100 using Linear Interpolation. 

This interpolated data, along with existing target data at 

a sampling rate of 100, was then processed with the 

LSTM to produce trained data at the same rate. 

Subsequently, we combined the trained data with the 

original data at a sampling rate of 100 to achieve a final 

output at a sampling rate of 200. The performance of our 

model was compared to that of traditional interpolation 

methods (Linear Interpolation, Spline Interpolation) and 

LSTM model. 

 

2. Methods 

 

2.1 Traditional Interpolation 

 

The first method of interpolation discussed is Linear 

Interpolation, which calculates the interpolated value by 

taking the average of two neighboring values, formulated 

as: 

(1)  𝑦 = 𝑦0 + 
(𝑦1−𝑦0)

(𝑥1−𝑥0)
 × (𝑥 − 𝑥0)                 

 

Linear Interpolation determines the intermediate value 

between two data points along a straight line. The 

coordinates (𝑥0, 𝑦0)   and (𝑥1, 𝑦1)  are employed to 

approximate the y-value corresponding to any given x-

value. 

Another method, Spline Interpolation [3], employs 

higher-order polynomials for connecting data points with 

smoother, curved segments. 

 

(2)  𝑆𝑖 (𝑥) = 𝑎𝑖 + 𝑏𝑖 (𝑥 − 𝑥𝑖 ) + 𝑐𝑖 (𝑥 − 𝑥𝑖 )2 + 𝑑𝑖 (𝑥 − 𝑥𝑖 )3 

 

Here,𝑖 = 0, 1, … , 𝑛 − 2 and, 𝑆𝑖(𝑥) represents the spline 

function over the interval [𝑥𝑖 , 𝑥𝑖+1] . The coefficients  

𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ,  and 𝑑𝑖  dictate the spline's curvature for the 

given segment. Spline Interpolation, thus, constructs a 

continuous, differentiable, and smooth curve through the 

dataset. 

Figure 1 illustrates the application of both Linear and 

Spline Interpolation methods to original data. Linear 

Interpolation connects data points directly, forming 

linear segments, whereas Spline Interpolation creates a 

smooth, curved path through the points, demonstrating 

its capability to estimate values with greater continuity 

and smoothness.  

mailto:hsksks7521@gmail.com


Transactions of the Korean Nuclear Society Autumn Meeting 

Gyeongju, Korea, October 26-27, 2023 

 
Fig. 1. Linear & Spline Interpolation 

 

2.2 Linear Interpolation + LSTM modeling 

 

Linear Interpolation, while a foundational method for 

data generation, is inherently limited in its accuracy as it 

merely averages two adjacent values. Employing deep 

learning to refine interpolation-generated data holds the 

potential for more precise predictions. The deep learning 

method we use focuses on the Long Short-Term Memory 

(LSTM) model, which is a key type of Recurrent Neural 

Network (RNN). The LSTM model was specifically 

designed to overcome the vanishing gradient problem 

encountered by traditional RNNs, enabling it to 

effectively retain information over extended periods. 

This characteristic is particularly advantageous for 

enhancing the analysis of time series data. By training an 

LSTM with time series data refined through interpolation, 

we significantly enhance the model's predictive 

capability. 

The methodology of combining Linear Interpolation 

with LSTM modeling is depicted in Figure 2. The 

process unfolds as follows: 

1. Before the process, we prepare the original data, 

which has a sampling rate of 200. 

2. Initially, we extract only the odd-indexed data 

points from the original dataset, which has a sampling 

rate of 200, to create a downsampled dataset with a 

sampling rate of 100. 

Fig. 2. Linear Interpolation + LSTM Modeling 

3. Linear Interpolation is then applied to this 

downsampled data to achieve an upsampling back to a 

rate of 200. 

4. Subsequently, we extract only the even-indexed 

points from the interpolated data to serve as the training 

dataset. 

5. The target dataset is formulated by extracting the 

even-indexed points from the original dataset. 

6. An LSTM model is constructed and trained using 

the data at a sampling rate of 100 derived from step 4. 

7. Finally, a new model is established by integrating 

the newly generated data, at a sampling rate of 200 from 

the LSTM, with the previously downsampled odd-

indexed data. 

In the integrated dataset, the odd-indexed points 

remain as they were in the original dataset, whereas the 

even-indexed points represent the LSTM-predicted 

values following interpolation. 

  

3. Experiments and results 

 

3.1 Dataset and preprocessing 

 

This study utilizes a dataset comprising 188 days of 

mini-seed format data, observed at a sampling rate of 200 

by Nanomatrix seismometers, spanning from November 

24, 2022, to June 15, 2023. To enhance the data quality 

for training, detrending was applied to eliminate linear 

trends and mean values. Subsequently, the daily data 

were segmented into 1-minute intervals (equivalent to 60 

seconds multiplied by a sampling rate of 200) for 

processing and analysis. 

 

3.2 Training 

3.2.1 Linear Interpolation + LSTM, LSTM Models 

 

The dataset was stratified into three subsets for 

training, testing, and validation, distributed in a 6:2:2 

ratio, respectively. 

 
Table Ⅰ : Summary of dataset 

Total Training Validation Test 

261,725 157,035 52,345 52,345 
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For the optimization algorithm, the Adam optimizer 

was selected due to its efficiency in combining the 

benefits of Momentum[4] and RMSprop algorithms. 

This approach adaptively modifies the learning rates for 

individual parameters, facilitating quicker convergence 

and enhancing the stability of the learning process. The 

models were trained using a batch size of 32 across 25 

epochs. 

Performance evaluation of the data involved the use of 

Mean Square Error (MSE)[5] and Log Spectral 

Distance(LSD) [6] metrics. These tools were employed 

to quantify errors both in the time domain and frequency 

domain, enabling a comprehensive assessment of model 

accuracy and efficacy. 

 

3.2.2 Linear Interpolation & Spline Interpolation 

 

Training utilized data from 188 days, processed in 1-day 

increments. We extracted only the odd-numbered data 

points from the original dataset, recorded at a sampling 

rate of 200, to create a downsampled training dataset at a 

sampling rate of 100. Subsequently, we performed 

upsampling back to a sampling rate of 200 using both 

Linear and Spline Interpolation techniques. 

 

3.3 Experiment Results 

3.3.1 Comparison Using MSE and LSD 

 

The performance of the Linear Interpolation + LSTM 

model was compared against that of the Linear and 

Spline Interpolation methods, as well as a standalone 

LSTM model, utilizing Mean Square Error (MSE) and 

Log Spectral Distance (LSD) as evaluation metrics. 

 
Table Ⅱ : Comparison with Models 

Model MSE LSD 

Linear Interpolation + LSTM 0.84 7.47 

LSTM 3.11 7.55 

Linear Interpolation 2.71 12.43 

Spline Interpolation 2.89 23.83 

 

Upon analyzing the interpolation results, Linear 

Interpolation demonstrated a mean square error (MSE) 

difference of approximately 0.18 and a log spectral 

distance (LSD) difference of around 11 when compared 

to Spline Interpolation. These findings indicate that the 

predictions made by Linear Interpolation, which 

employs the average of two adjacent data points, 

outperform those derived from the complex higher-order 

polynomial formula utilized in Spline Interpolation. 

Further comparison between the Linear Interpolation + 

LSTM model and the performances of the standalone 

LSTM model and independent interpolation methods 

revealed that the Linear Interpolation + LSTM model 

exhibits superior performance in both MSE and LSD 

metrics. This suggests that preprocessing the training 

data with an effective method like interpolation to 

enhance learning efficiency, followed by subsequent 

LSTM training, leverages the strengths of both 

approaches. Specifically, it combines the high MSE 

performance of interpolation with the effective LSD 

performance of LSTM, thereby enhancing overall model 

efficacy. 

 
Fig. 3. Comparison of Original and Generated Data 

 

3.3.2 Spectrogram Analysis 

 

The spectrogram analysis for Linear Interpolation + 

LSTM, relative to the original data of an earthquake 

event occurring on April 30, 2023, at 19:03:29, 16 km 

east of Okcheon-gun, Chungcheongbuk-do, South 

Korea—with a depth of 6 km and magnitude of 3.1—

reveals no significant disparities in decibel levels below 

50 Hz. However, examining the frequencies above 50 Hz, 

it is observed that the amplitudes are mirrored, akin to a 

decalcomania, around the 50 Hz mark, amplifying the 

signal in both directions. Given the substantial amount of 

data below 50 Hz, it is imperative to focus on learning 

from more data above this frequency threshold to address 

these discrepancies effectively. 
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Fig. 4. Spectrogram of Original Data 

 

 
Fig. 5. Spectrogram of Linear Interpolation + LSTM 

 

3.Conclusion 

 

This study presents a new approach to upsampling 

seismic signals, showing that combining suitable data 

processing methods with the right deep learning model 

can exceed the performance of traditional interpolation 

techniques or standalone deep learning models. 

Our new method, which integrates the Linear 

Interpolation + LSTM model, has shown to outperform 

both interpolation and LSTM models alone, achieving 

improvements of approximately 2 in mean square error 

(MSE) and 0.1 in log spectral distance (LSD). Despite 

these advancements, the comparison of the spectrogram 

with the original data highlighted a challenge: the 

predominance of data values below 50Hz compared to 

those above, indicating a limitation in capturing data 

above 50Hz effectively. 

This method holds promise for enhancing the 

processing of seismic data collected by the Korea 

Meteorological Administration. We anticipate that the 

improved upsampling technique will facilitate the 

acquisition of higher-quality data, crucial for further 

research endeavors. Among these is the development of 

Smart Seismic Sensors[7], which we are currently 

underway at a sampling rate of 200, and the study of 

Seismic Data Processing and Prediction (SDPP). This 

work paves the way for more sophisticated analyses and 

applications in the field of seismology, leveraging 

advanced deep learning to enhance earthquake 

preparedness and response strategies. 

4.Future Work 

 

In our study, we enhanced performance by synergizing 

interpolation and deep learning models. Nonetheless, 

there exists potential for further improvements through 

various factors such as time slicing, choice of 

interpolation type, and selection of deep learning models. 

Throughout this research, data was segmented into 60-

second intervals. The performance and processing time 

can differ based on the duration of these segments. 

Exploring optimal time slices beyond the 60-second 

framework may influence the efficiency and accuracy 

of upsampling. 

Moreover, our investigation primarily focused on 

linear interpolation, chosen for its superior standalone 

performance. However, alternative interpolation 

methods might yield better results when combined with 

deep learning techniques. Future studies could explore a 

wider array of interpolation strategies to ascertain the 

most effective combinations. 

The choice of deep learning model also plays a crucial 

role in performance variation. While this study utilized 

RNN-based LSTM models, exploring other architectures 

such as 3D Convolutional Neural Networks (CNNs), 

which account for spatial dimensions, or generative AI 

models, could lead to significant advancements. 

Investigating these alternatives may pave the way for 

developing more accurate and efficient models for 

seismic signal processing. 
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