
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

Development of the Automatic Verification and Validation System for the CUPID Code

Quality Assurance

J. S. Suh a, I. K. Park b, S. J. Do b, H. Y. Yoon b

aSENTECH Co., 105, Sinildong-ro, Daedeok-gu, Daejeon, Korea, 34324
bKAERI, 111-989, Daedeok-daro, Yuseong-gu, Daejeon, Korea, 34057

*Corresponding author: jssuh@s2ntech.com

*Keywords : GitLab, CI/CD, Variation Report, CUPID Code, Quality Assurance

1. Introduction

In recent years, the adoption of Continuous

Integration and Continuous Deployment (CI/CD)[1]

practices has become increasingly prevalent in software

development workflows (Fig. 1). CI/CD offers a

streamlined approach to software development,

enabling developers to automate the process of

integrating code changes into a shared repository and

deploying applications to production environments

swiftly and reliably.

GitLab, a widely used platform for version control

and collaboration, provides robust features for

implementing CI/CD pipelines seamlessly within the

development workflow. By leveraging GitLab's CI/CD

capabilities, teams can automate the building, testing,

and deployment of their software applications, thereby

enhancing productivity and ensuring the consistency

and quality of code releases.

Fig. 1. GitLab/GitLab-Runner execution flow.[2]

The advantages of CI/CD extend beyond automation

and efficiency. Some key benefits include:

(1) Improved Collaboration:

CI/CD encourages collaboration among team

members by facilitating the integration of code changes

from multiple developers into a central repository. This

fosters a culture of transparency and accountability, as

developers can easily track changes, review code, and

provide feedback within the development pipeline.

(2) Faster Time-to-Market:

By automating the build, test, and deployment

processes, CI/CD reduces the time required to deliver

new features or updates to end-users. Rapid feedback

loops enable developers to identify and address issues

early in the development cycle, leading to shorter

release cycles and faster time-to-market for software

products.

(3) Enhanced Quality Assurance:

CI/CD promotes a culture of continuous testing,

allowing developers to run automated tests on each

code commit to identify regressions or bugs promptly.

By integrating testing into the development pipeline,

teams can maintain high code quality and reliability

throughout the software development lifecycle.

(4) Increased Reliability:

With CI/CD, the process of deploying applications to

production environments becomes more reliable and

predictable. Automated deployment pipelines ensure

consistent deployment practices across different

environments, reducing the likelihood of deployment

errors or configuration drifts.

(5) Scalability and Flexibility:

CI/CD pipelines are highly scalable and adaptable to

the needs of diverse development projects. Whether

developing small-scale applications or large-scale

enterprise systems, teams can customize CI/CD

pipelines to accommodate various workflows,

technologies, and deployment targets.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

In this paper, we explore the utilization of GitLab

CI/CD functionality in the context of scientific

computing and numerical analysis. By harnessing the

power of CI/CD, researchers can streamline the

execution of complex computational tasks, enhance

collaboration, and accelerate the pace of scientific

discovery.

2. Methods and Results

2.1 Migration of DOS Batch Operations to GitLab

CI/CD

The migration of legacy DOS batch operations to

GitLab CI/CD represents a significant step towards

modernizing the computational workflow and

improving efficiency in scientific computing

environments. In this section, we delineate the process

of transforming the existing DOS batch scripts into

GitLab CI/CD jobs[3], enabling the automation of the

computational workflow described earlier.

(1) Directory Management:

In the DOS batch environment, the task of organizing

input files into separate directories for each case is

achieved through manual scripting. This involves

creating directories and copying relevant input files for

each case individually.

In the GitLab CI/CD pipeline, directory management

is automated using YAML configurations. By defining

stages and jobs within the pipeline, we can dynamically

create directories for each case and populate them with

the necessary input files.

stages:

 - directory_creation

 - cupid_analysis

 - graph_generation

 - report_generation

 - pdf_generation

The YAML script specifies the sequence of actions to

be performed, ensuring the orderly execution of the

computational workflow.

(2) CUPID code Execution:

The execution of CUPID codes[4] within the DOS

batch environment involves manually invoking the

executable files for each case, providing input

parameters, and capturing the output results.

With GitLab CI/CD, CUPID code execution is

automated through the definition of job scripts within

the pipeline configuration. Each job corresponds to a

specific case, wherein the CUPID code is invoked with

the requisite input files.

cupid_analysis:

 script:

 - ./run_cupid_analysis.sh $CASE_INPUT_DIR

By parallelizing the execution of CUPID code

analysis jobs across multiple runners, we can expedite

the computation process and enhance resource

utilization.

(3) Graph Generation:

After the completion of CUPID code analysis for all

cases, the next step involves generating graphical

representations of the computational results using

Matplotlib.

GitLab CI/CD facilitates the integration of graph

generation tasks into the pipeline, wherein Python

scripts utilizing Matplotlib are executed to produce

graphs based on the output data.

graph_generation:

 script:

 - python generate_graphs.py $RESULTS_DIR

By leveraging Docker containers with pre-installed

dependencies, we ensure the reproducibility of graph

generation across different computing environments.

(4) Report Generation:

The final stage of the computational workflow entails

the generation of a validation report incorporating the

computational results and corresponding graphs.

Using LaTeX templates, we automate the creation of

the validation report within the GitLab CI/CD pipeline,

integrating the generated graphs and textual analyses.

report_generation:

 script:

 - pdflatex generate_report.tex

GitLab artifacts are utilized to capture the

intermediate files generated during the report generation

process, facilitating traceability and review.

(5) PDF Generation:

The culmination of the workflow involves the

compilation of the validation report and associated

graphs into a comprehensive PDF document for

dissemination.

GitLab CI/CD orchestrates the compilation of the

LaTeX document and associated resources, resulting in

the generation of a PDF file ready for distribution.

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

pdf_generation:

 script:

 - pdflatex main_pdf.tex

The automated PDF generation process ensures

consistency and reproducibility in the dissemination of

research findings.

2.2 Empowering Scientific Computing with GitLab

CI/CD

The migration of DOS batch operations to GitLab

CI/CD represents a paradigm shift in the automation

and management of computational workflows in

scientific computing. By harnessing the power of

GitLab CI/CD, researchers can streamline the execution

of complex simulations, facilitate collaboration, and

enhance the reproducibility of computational analyses.

Through the integration of GitLab CI/CD into our

computational workflow, we have demonstrated the

feasibility of automating repetitive tasks, such as

directory management, code execution, graph

generation, and report generation. This automation not

only accelerates the pace of scientific discovery but also

improves the reliability and traceability of

computational results.

Fig. 2. Output of the CUPID Code Quality Assurance with

GitLab CI/CD and GitLab-Runner.

3. Conclusions

Moving forward, the adoption of GitLab CI/CD in

scientific computing environments holds immense

potential for advancing research methodologies and

accelerating the pace of innovation. By embracing

modern software development practices within the

realm of scientific computation, we can unlock new

avenues for collaboration, reproducibility, and

discovery.

Acknowledgments

This work was supported by Korea Atomic Energy

Research Institute (KAERI, 524510-23).

REFERENCES

[1] GitLab. 2024. Use CI/CD to build your application.

https://docs.gitlab.com/ee/topics/build_your_application.html.

[2] GitLab. 2024. Runner execution flow. https://docs.

gitlab.com/runner/.

[3] GitLab. 2024. Configure GitLab Runner. https://docs.

gitlab.com/runner/configuration/.

[4] I. K. Park, S. J. Lee, H. Y. Yoon, Development of

Regulatory Verification Technology Element for Nuclear

Reactor Based on Multi-scale Thermal Hydraulics Analysis,

KAERI, KAERI/RR-4069, 2015.

