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1. Introduction 

 
Currently, countries around the world are in a race to 

develop cutting-edge design concepts for small modular 

reactor. For example, Choi et al. investigated the 

feasibility of a helium bubbling system for natural 

circulation in molten salt fast reactor [1]. A common 

strategy among them involves enhancing flow control 

system efficiency and safety through the application of 

artificial intelligence techniques [2, 3]. Reinforcement 

learning (RL), capable of training an agent to find 

optimal actions in a dynamic environment for 

maximizing cumulative rewards, emerges as a promising 

technique in flow controls [4]. 

Nevertheless, the applicability of state-of-the-art 

machine learning methods within flow control remains 

unexplored [4]. The objective of this study is to address 

this gap by developing a novel deep reinforcement 

learning (DRL) method focused on maximizing learning 

efficiency in flow control. Notably, efficient 

reinforcement learning is particularly crucial to nuclear 

system applications, where the cost of episode 

exploration is prohibitive, such as helium bubbling 

system [1]. 

We developed a group invariant deep reinforcement 

learning framework to reduce state representation 

complexity by exploiting symmetries. In other words, the 

original flow field can be represented in symmetry-

reduced subspace. Even under conditions where the 

number of episodes is insufficient for general method, 

this framework can find an optimal policy by leveraging 

a combination of multi-agent and group invariant 

approaches. To evaluate the performance of this study, 

𝑁𝑢  control of two-dimensional Rayleigh-Bénard 

convection (RBC) was selected as a case study. In 

nuclear reactor severe accidents, RBC occurs during 

molten core-concrete interactions. The performance of 

our DRL framework was compared with the framework 

in previous study [5].  

 

2. Methods and Results 

 

2.1 Reinforcement learning 

 

Reinforcement learning is a branch of machine 

learning where an agent interacts with an environment to 

learn optimal behaviors through trial and error. As shown 

in Fig. 1, The agent is the entity responsible for making 

decisions within the environment, and it takes actions 

that influence the state of the environment. The 

environment represents the external system in which the 

agent operates, and its state encapsulates the current 

situation.  

 

 
Fig. 1. Example of reinforcement learning framework with 

computational fluid dynamics (CFD). 

 

Actions are the decisions or moves made by the agent 

to transition from one state to another. The agent receives 

feedback in the form of rewards or penalties based on the 

actions taken, providing a signal to guide its learning. 

The policy is the strategy or set of rules the agent 

employs to determine its actions in different states. The 

goal of reinforcement learning is for the agent to learn a 

policy that maximizes the cumulative or instantaneous 

reward over time, leading to optimal decision-making in 

complex and dynamic environments. 

However, Reinforcement learning faces challenges 

related to computational cost and the potential for the 

emergence of suboptimal or bad policies. The 

computational cost arises from the need for agents to 

interact with the environment, learn from experiences, 

and update their policies iteratively. In complex and large 

state or action spaces, training a reinforcement learning 

model can demand significant computational resources 

and time, making it impractical for certain applications. 

Additionally, when we increase the learning rate to 

reduce computation time, there is a problem of 

convergence to a bad policy [6]. 

 

2.2 Group invariant neural networks 

 

The flow control system in a nuclear reactor also has 

a complex and large state dimension. For practical 

reinforcement learning applications, we need to 

minimize state representation complexity according to 

characteristics of each flow control system. If the original 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 
flow field can be represented in symmetry-reduced 

subspace, we can explore the optimal policy more 

efficiently [7]. For example, in 2D Rayleigh-Bénard 

convection flow, the same action is required in a 

symmetric state. Thus, a symmetry-invariant network 

architecture is required as shown in Fig. 2. 

 

 
 

Fig. 2. 2D RBC: symmetrical invariant policy problem 

 

Recently, Lafarge et al. developed group equivariant 

convolutional networks for image classification purposes. 

Their roto-translation equivariant convolutional layer is 

an architecture whose output is equivariant depending on 

the translation and rotation of the image [8]. However, in 

our reinforcement learning framework, an architecture 

where actions are invariant (not equivariant) depending 

on the state can improve learning performance. 

For this reason, we developed the group invariant 

convolutional neural networks (GI-CNNs) as shown in 

Fig. 3. In our novel network, the combination of direct 

lifting layer and shifted kernels produces completely 

invariant output under symmetrical state conditions. As 

shown in Fig. 4, the group invariant convolutional layers 

were built in the front of the fully connected layer. 

 

2.3 Shenfun with the Spectral Galerkin method 

 

As described in Section 2.1, the environment of 

reinforcement learning represents the external system in 

which the agent operates. To investigate the optimal 

policy of flow control, we can employ CFD as the 

environment. In this study, Shenfun, high performance 

computing platform for solving partial differential 

equations (PDEs) by the spectral Galerkin method, was 

used as the CFD solver. Because this platform was 

developed by Python language, it is compatible with 

Tensorforce (a Python-based reinforcement learning 

framework). 

 

 
Fig. 3. Group invariant convolutional networks for symmetry-

reduced representation. 

 

 
Fig. 4. The overall framework of deep neural networks (agent) 

in our reinforcement learning. 

 

2.4 RBC Simulation 

 

Fig. 5 illustrates the schematic of the RBC simulation 

in this study. The flow occurs between a lower hot wall 

with an average temperature of 𝑇𝐻 =  2  and an upper 

wall kept cooler at a constant temperature of 𝑇𝐶 =  1. 

While 𝑇𝐻  remains consistent in what we term the 

'baseline' scenario (i.e., without any control applied), it 

varies across spatial positions in what we refer to as the 

'controlled' scenario, as elaborated below. Both walls are 

separated by a distance of 2𝐻, and the no-slip boundary 

condition applies to both. The lateral ends of the domain, 

with a normalized width of 𝐿 =  2𝜋𝐻, are subjected to 

periodic boundary conditions.  

Throughout the study, a Prandtl number of 𝑃𝑟 =
 0.71 is utilized, corresponding to air's Prandtl number. 

𝑅𝑎 represents the ratio of time scales related to thermal 

transport through diffusion and convection. This 

indicates that higher 𝑅𝑎  values render flows more 

susceptible to instabilities due to buoyancy-driven 

convection. The Ra employed in this study is 𝑅𝑎 =  104, 

surpassing the critical 𝑅𝑎𝑐 when no control is exerted on 

the flow. It means that effective controlling convection 

flow was required to minimize/maximize heat transfer.  

 

 
Fig. 5. Schematic representation of 2D RBC simulation 

 

2.5 Results 

 

In this study, the performance of our novel 

architecture was evaluated on the 𝑁𝑢 control of 2D RBC. 

This is a case study that minimizes 𝑁𝑢 by controlling the 

temperature of the lower wall divided into 10 sections. A 

uniform lower temperature initial condition is given to 

the agent and no correct answer is given to agent as to 

the optimal policy. 

 
✓ State: 2D temperature and velocity field 

✓ Action: Wall temperature change (10 segments)  

✓ Reward: Function by instantaneous Nusselt number 
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Fig 5. shows the learning curves obtained in both fully 

connected based RL and GI-CNNs based RL. 

Reinforcement learning searches for the optimal policy 

through episodes, and a numerous number of episodes 

means high computing costs. It was conformed that the 

GI-CNNs exploiting symmetry-reduced subspace 

converges to the optimal policy much more efficiently 

(about 150 episodes faster). However, in several 

independent learning curves, it was confirmed that the 

minimum 𝑁𝑢 number was lower for FC architecture. It 

seems that the invariant representations have side effects 

that can limit the agent’s actions. A detailed analysis of 

this is our future work. 

 

 
Fig. 5. Comparison of learning curves obtained in both the fully 

connected (FC) and GI-CNNs.  

 

3. Conclusions 

 

In this study, we proposed a group invariant neural 

networks to enhance the DRL performance.  This 

architecture can reduce state representation complexity 

by exploiting symmetries. In 𝑁𝑢 control of 2D RBC case 

study, it was confirmed that this architecture finds the 

optimal policy 150 episodes faster than previous 

architecture model. Thus, this work demonstrates the 

potential of group invariant DRL in the nuclear reactor 

flow control applications. However, in several 

independent learning curves, it was confirmed that the 

minimum 𝑁𝑢 number was lower for FC architecture. A 

detailed analysis of this is our future work. 

 

 

ACKNOWLEDGEMENT 

 

This work was supported by the “Human Resources 

Program in Energy Technology” of the Korea Institute of 

Energy Technology Evaluation and Planning (KETEP), 

granted financial resource from the Ministry of Trade, 

Industry and Energy, Republic of Korea (No. 

20204010600470) and the National Research 

Foundation of Korea (NRF) grant funded by the Korea 

government (MSIT) (RS-2023-00278121). 

 

 

 

REFERENCES 

 

[1] Choi, W. J., Park, J. H., Lee, J., Im, J., Cho, Y., Kim, 

Y., & Kim, S. J. (2023). Experimental and numerical 

assessment of helium bubble lift during natural 

circulation for passive molten salt fast reactor. Nuclear 

Engineering and Technology, In Press. 

[2] Jeon, J., Lee, J., & Kim, S. J. (2022). Finite volume 

method network for the acceleration of unsteady 

computational fluid dynamics: Non‐reacting and 

reacting flows. International Journal of Energy Research, 

46(8), 10770-10795. 

[3] Jeon, J., Lee, J., Vinuesa, R., & Kim, S. J. (2024). 

Residual-based physics-informed transfer learning: A 

hybrid method for accelerating long-term CFD 

simulations via deep learning. International Journal of 

Heat and Mass Transfer, 220, 124900. 

[4] Garnier, P., Viquerat, J., Rabault, J., Larcher, A., 

Kuhnle, A., & Hachem, E. (2021). A review on deep 

reinforcement learning for fluid mechanics. Computers 

& Fluids, 225, 104973. 

[5] Vignon, C., Rabault, J., Vasanth, J., Alcantara-Avila, 

F., Mortensen, M., & Vinuesa, R. (2023). Effective 

control of two-dimensional Rayleigh-Benard convection: 

invariant multi-agent reinforcement learning is all you 

need. Physics of Fluids, 35, 065146. 

[6] Sutton, R. S., & Barto, A. G. (2018). Reinforcement 

learning: An introduction. MIT press. 

[7] Belus, V., Rabault, J., Viquerat, J., Che, Z., Hachem, 

E., & Reglade, U. (2019). Exploiting locality and 

translational invariance to design effective deep 

reinforcement learning control of the 1-dimensional 

unstable falling liquid film. AIP Advances, 9(12). 

[8] Lafarge, M. W., Bekkers, E. J., Pluim, J. P., Duits, R., 

& Veta, M. (2021). Roto-translation equivariant 

convolutional networks: Application to histopathology 

image analysis. Medical Image Analysis, 68, 101849. 


