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1. Introduction 

 
The Korea-Multi-Purpose Accelerator Complex 

(KOMAC) operates a 100 MeV proton linear 

accelerator, providing a high flux proton beam at the 

TR103, a general-purpose irradiation facility. A real-

time and in-situ proton beam profiles monitoring 

system which includes a P43 (ProxiVision) phosphor 

screen and CMOS camera was recently introduced and 

tested at the TR103. However, since this system is 

installed in air, various factors degrade the quality of 

the beam profile images including high level 

background, hot pixels caused by secondary radiation 

exposure [1], and saturation of the beam profile under 

the high flux proton irradiation. In this study, we 

employed U-Net, a deep learning model, to effectively 

restore noisy and saturated beam profiles to 

approximate their true beam profiles [2]. 

 

2. Methods and Results 

 

This section describes several methods to generate 

datasets for deep learning training. To prepare a large 

dataset, virtual beam profiles with background noise 

and virtual saturated beam profiles were generated 

using Python [3]. 

 

2.1 Virtual Beam Profile Datasets 

 

The beam profile datasets needed to train a deep 

learning model that restores the noisy beam profile to 

the true beam profile were virtually generated. For 

generating ground truth beam profiles, in an image size 

of 400×400 pixel, the location, sigma in the x and y 

directions of the beam profile were randomly selected. 

For generating noisy beam profiles to be used as input 

for model training, one of the five kinds of real 

background image was randomly selected and 

multiplied to the ground truth beam profile as shown in 

Fig. 1. When the flux level of a proton beam exceeds a 

certain threshold, the camera reaches its limit of 

acceptable light, resulting in the truncation of the upper 

portion of the beam profile. Therefore, to replicate this 

phenomenon with a virtual beam profile, the saturated 

region was modeled using a super gaussian function as 

shown in Fig. 2. The sigma values of the inner super 

gaussian function and outer gaussian function, along 

with the location of their boundaries and the beam 

profile, were randomly selected. Datasets comprising 

3,500 input-target pairs were prepared for both the 

noisy beam profile and the saturated beam profile. 

 

 
Fig. 1. Process of generating a dataset of virtual beam profile 

with background noise 

 

 
Fig. 2. Process of generating a dataset of virtual saturated 

beam profile. 

 

2.2 Deep Learning Model 

 

The U-Net architecture comprises a contracting path 

for context extraction and an expanding path for precise 

localization as shown in Fig. 3. The contracting path 

includes convolutional layers followed by max-pooling 

for down-sampling, while the expanding path involves 

up-sampling followed by convolutional layers for 

feature refinement. Skip connections between 

corresponding layers maintain spatial information, 

facilitating accurate reconstruction of the true beam 



Transactions of the Korean Nuclear Society Spring Meeting 

Jeju, Korea, May 9-10, 2024 

 

 
profile from both noisy and saturated beam profile 

inputs. To find the optimal model for efficient beam 

profile recovery, we trained six kinds of the U-Net 

architecture by adjusting the number of layers, nodes, 

and up-sampling methods. U-Net #1, #2, and #3 are 

categorized based on the number of layers and nodes. 

U-Net 1 has the following structure: [(1,64), (64,128), 

(128,256), (256,512), (512,1024)]. U-Net #2 has a 

structure of: [(1,64), (64,128), (128,256), (256,512)]. 

Lastly, U-Net 3 has a structure of: [(1,32), (32,64), 

(64,128), (128,256)]. Adam optimizer [4] was used, 

employing Mean Squared Error (MSE) loss for 

restoring the noisy beam profile and MS-SSIM loss for 

the saturated beam profile restoration [5]. The dataset 

was split into training, validation, and test sets, 

consisting of 3000, 400, and 100 samples, respectively. 

 

 
Fig. 3. The architecture of U-Net #1 for restoration of noisy 

and saturated beam profile. 

 

2.3 Model Selection 

 

To evaluate the six trained models aimed at restoring 

the noisy beam profile and saturated beam profile, the 

average Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index (SSIM) values between the 

output image from the models and the target image for 

100 test data samples were computed. These results are 

summarized in Table 1 and Table 2, respectively. (In 

tables, “bc” and “bl” denotes bicubic and bilinear 

interpolation of up-sampling methods.) As shown in 

Table 1, for the restoration of the noisy beam profile, 

the U-Net #2-bl architecture with [(1,64), (64,128), 

(128,256), (256,512)] and bilinear up-sampling 

exhibited the highest PSNR and SSIM values among all 

models. Conversely, for the restoration of the saturated 

beam profile, the U-Net #1-bc architecture with [(1,64), 

(64,128), (128,256), (256,512), (512,1024)] and bicubic 

up-sampling exhibited the highest PSNR and SSIM 

values as shown in Table 2. 

 

Table 1: Average PSNR and SSIM Results for Six Models 

in Noisy Beam Profile Restoration 

 
U-Net 

#1-bl 

U-Net 

#1-bc 
U-Net 

#2-bl 
U-Net 

#2-bc 
U-Net 

#3-bl 
U-Net 

#3-bc 
PSNR 36.72 42.57 46.95 46.61 46.71 46.69 

SSIM 0.9192 0.9897 0.9913 0.9891 0.9889 0.989 

 

Table 2: Average PSNR and SSIM Results for Six Models 

in Saturated Beam Profile Restoration 

 
U-Net 

#1-bl 

U-Net 

#1-bc 
U-Net 

#2-bl 
U-Net 

#2-bc 
U-Net 

#3-bl 
U-Net 

#3-bc 

PSNR 36.79 41.62 40.34 19.53 23.59 38.19 

SSIM 0.9879 0.9925 0.9929 0.9508 0.9781 0.9944 

 

2.5 Beam Profile Restoration 

 

Utilizing the selected models, the saturated and noisy 

beam profile measured using the phosphor screen were 

restored to the true beam profile. Firstly, the 20 MeV 

proton beam profile was captured using a phosphor 

screen and a CMOS camera, and then cropped to a size 

of 400×400 pixel. Secondly, the cropped image was fed 

into the input of the U-Net #2-bl model to obtain the 

denoised beam profile image. Thirdly, the denoised 

image was fed into the input of the U-Net #1-bc model 

to obtain the desaturated beam profile image. Fig 4. 

illustrates the process of reconstructing the true beam 

profile from the noisy and saturated beam profile, along 

with its comparison to the measurement obtained from 

the HD-V2 film (GafchromicTM). 

 
Fig. 4. The process of reconstructing the true beam profile 

from the noisy and saturated beam profile and its comparison 

to the measured beam profile obtained from the HD-V2 film. 

 

3. Conclusions 

 

U-Net, a deep learning model, was employed to 

restore noisy and saturated beam profile to the true 

beam profiles.  To prepare datasets for training deep 

learning models, virtual beam profiles with background 

noise and virtual saturated beam profiles were 

generated using Python. To find the optimal model for 

efficient beam profile restoration, six kinds of the U-

Net architecture by adjusting the number of layers, 

nodes, and up-sampling methods were trained. The U-

Net #2-bl model was selected for restoring the noisy 

beam profile, while the U-Net #1-bc model was 

selected for restoring the saturated beam profile. It was 

successfully verified that the selected models closely 

approximated the measurement obtained from the HD-

V2 film in restoring the beam profile. These models 

will enable precise real-time monitoring of beam 

profiles by effectively restoring noisy and saturated 

proton beam profiles. 
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