
Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

GPU Acceleration of 3D MOC Solver in STREAM3D Using OpenACC

Siarhei Dzianisaua, Deokjung Leea,b,*

aDepartment of Nuclear Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan,

44919
bAdvanced Nuclear Technology and Services, 406-21 Jonga-ro, Jung-gu, Ulsan, 44429, Republic of Korea

*Corresponding author: deokjung@unist.ac.kr

Keywords: MOC, GPU, OpenACC, CUDA.

1. Introduction

Method of characteristics (MOC) has become a

prominent way of finding a deterministic solution for a

neutron transport equation. Codes that utilize MOC in

some form, such as nTRACER [1], OpenMOC [2],

MPACT [3], and others, offer a competitive alternative

to high-fidelity Monte-Carlo codes while consuming

less memory and, often, less computational resources.

Given the recent advancements in graphics card

(GPU) acceleration of time-consuming and resource-

demanding applications in various fields of science and

engineering, MOC codes became a desired candidate

for a similar performance boost. Notable success was

achieved by the nTRACER developers who ported the

2D/1D MOC solver to GPU [4], followed by porting

other time-consuming modules such as the depletion

module [5]. These results pushed others, including us,

to develop efficient algorithms for porting our codes to

GPU.

In our case, we are interested in enabling GPU

acceleration for our in-house code STREAM [6]. This

code, unlike the previously mentioned references, is

based on a 2D/3D Diamond-Difference MOC solver.

The advantages of this solver include higher accuracy

and stability compared to 2D/1D methods, while saving

substantial amounts of system memory and computing

resources. Unsurprisingly, other researchers already

attempted to develop a GPU-enabled code utilizing our

in-house 2D/3D MOC method [7]. However, this work

lacks information on the actual speedup offered by

adding a GPU into the system. This is because a CPU

version of the code needs to be developed for such a

comparison, which is not done in this and some other

cases of publicly presented GPU-enabled codes.

In this work, we are aiming to share our approach in

offloading the most time-consuming part of our code

STREAM to GPU using an OpenACC framework.

Similar to [4] and [5], we have a CPU-optimized

version of the code already implemented, which means

we can demonstrate the actual comparison between the

CPU and the GPU versions that utilize the same

methodology, thus making it a fair comparison in terms

of showing the GPU speedup. The methodology of our

approach is briefly described in section 2, while the test

problem results are covered through sections 3 and 4.

Lastly, the conclusion remarks are presented in section

5.

2. Methodology

The first published result of our work on the GPU

enabling of our code STREAM [8] was based on the

same code structure as the CPU version, thus offering

identical results. However, that approach not only was

impractical due to the lack of GPU-specific

optimizations, but also was problematic in terms of

problem scalability. The largest problem presented

there was the 3D C5G7 problem, which only required 8

Gb of system memory, thus making it easy to fit into a

limited GPU memory. However, the real-world

problems could consume hundreds of Gb of system

memory, thus making them more challenging to be

properly offloaded to GPU.

Fig. 1. Axial decomposition strategy for offloading the

2D/3D MOC solver to GPU.

In our current version, we have introduced a novel

decomposition approach that efficiently reduces the

occupied GPU memory for any reactor geometry size.

The approach is schematically shown in Fig. 1 and is

based on the original code structure inherited from [6]

and [8], while utilizing the sequential nature of the axial

loop. As a result, for each plane, a portion of minimally

required data is transferred from the host side (also

known as the CPU side) to the device side (known as

the GPU side) before the planar sweep. After the sweep

is finished, some data stays on the device, while the

axially dependent data is copied back to the host for

storage and future use. The essential data to be copied

mailto:deokjung@unist.ac.kr

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

in and copied out every step includes the incoming and

outgoing angular fluxes, and neutron current for CMFD

acceleration.

3. Description of test problems

To determine the performance boost offered by our

GPU-enabled MOC solver, two problems were chosen.

The first problem is the 3D C5G7 benchmark problem

in quarter-core symmetry [8][9]. It uses only 7 neutron

energy groups and does not have any multi-physics

feedback. The second problem is a conventional OPR-

1000 3D model [10] simulated in octant-core format to

save the system memory. The chosen model was

assembled using gadolinia (Gd) fuel assemblies (FA)

shown in stripe colors in Fig. 2, and non-Gd FAs shown

in solid colors. Unlike the C5G7 problem, the OPR-

1000 model was simulated with thermal-hydraulic

feedback and using all 72 neutron energy groups.

Fig. 2. Loading pattern of the modeled reactor in a quarter-

core format (solid colors – UO2 pins only; stripe colors – UO2

pins and Gd pins; grey frame – radial reflector).

An important difference between the chosen models

and other GPU-enabled code models such as [5] and [7]

is the axial mesh size. In STREAM, the axial mesh size

is 3 cm, resulting in 197 axial planes for the OPR-1000

problem, and 64 axial planes for C5G7 problem, which

is higher than in the mentioned publications. This

choice adds extra fidelity to the code, while the

downside is the higher system memory requirement.

4. Results and discussion

The presented results were obtained using the

following configurations. For the CPU reference, a 64-

core system was used (2 AMD EPYC 7543 32-core

CPUs). For the GPU result, 8 NVIDIA RTX A5000

were used for the MOC solver, while the remaining

parts of the code were accelerated using the same 64

CPU cores.

First, the 3D C5G7 benchmark execution time for the

CPU reference and the GPU-enabled code is provided

in Table 1. The 2D FA powers shown in Fig. 3 are non-

distinguishable, while the effective multiplication factor

(keff) is identical for both versions.

Table 1. C5G7 performance

Metric CPU GPU Speedup

MOC Solver, sec 1,368 34 40.23

Total execution

time, sec
1,704 100 17.04

Fig. 3. C5G7 2D FA power distribution for the CPU

reference (left) and the GPU-enabled code (right).

Fig. 4. OPR-1000 2D FA power distribution for the CPU reference (left) and the GPU-enabled code (right).

Transactions of the Korean Nuclear Society Spring Meeting

Jeju, Korea, May 9-10, 2024

For the OPR-1000 model, the corresponding results

are presented in Table 2 and Fig. 4. Similar to the C5G7

problem, the keff value of the GPU version exactly

matched the CPU reference result.

Table 2. OPR-1000 octant-core performance

Metric CPU GPU Speedup

MOC Solver, sec 61,535 3,995 15.40

Total execution

time, sec
212,416 11,201 18.96

All in all, the presented results show noticeable

improvement of the C5G7 model calculation time and

indicate the memory efficiency of the newly developed

GPU code. The OPR-1000 octant-core problem requires

around 1 Tb of system memory for storing all the

necessary data, which could impose issues for GPU

code development due to comparably tiny memory

capacity of consumer-grade GPUs (in our case – 24 Gb

per card). However, the data splitting method allowed

our code to reliably fit inside the GPU memory

regardless of the core geometry size.

The reason for drastic reduction of the total execution

time in Table 2 is the communication time between

radially decomposed regions. In the GPU code, each

MPI process is assigned a separate GPU. In the CPU

code, there could be very few OpenMP-enabled CPU

cores per MPI process. This could create a load

imbalance between different radial domains and

increase the waiting times for exchanging the incoming

and outgoing flux information. The solution for the

CPU side is to employ more CPU cores, which is

typically done. However, this is beyond the scope of the

presented study because our goal is to compare a single

node performance using the same hardware resources,

compiler, and working environment.

5. Conclusions

In this study, fresh results on the development of

GPU-enabled version of 2D/3D MOC code STREAM

are presented. To overcome the challenges of fitting a

large commercial PWR problem into a small GPU on-

board memory, a new method of axial decomposition

was introduced and underwent testing. Two common

problems were used for the testing purposes, one is the

C5G7 problem, and the other is an OPR-1000 octant-

core problem that is using all 72 energy groups with

multi-physics feedback.

Testing was performed using a single computing

node consisting of 64 CPU cores and 8 GPU cards.

Offloading the 2D/3D MOC solver of STREAM onto

GPUs showed more than 15 times speedup compared to

the CPU result. Overall, the total execution time of the

code was also drastically reduced, partially due to using

only a single computing node for evaluation. Notably,

the results of calculations stayed identical between the

CPU and the GPU versions due to using the same

methodology and directly comparing the CPU version

of the code to the GPU version of the code. This offers

important insights on the actual speedup that could be

achieved by enabling the GPU acceleration in an

already existing CPU-optimized code.

Future plans for the GPU-enabled version of

STREAM include offloading other computationally

expensive modules to GPU and comparing the codes

using multiple CPU and GPU nodes.

Acknowledgment

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. NRF-

2019M2D2A1A03058371).

REFERENCES

[1] Y. S. Jung, C. B. Shim, C. H. Lim, H. G. Joo, Practical

Numerical Reactor Employing Direct Whole Core Neutron

Transport and Subchannel Thermal/Hydraulic Solvers, Annals

of Nuclear Energy, Vol. 62, Pages 357-374, 2013.

[2] W. Boyd, S. Shaner, et al., The OpenMOC Method of

Characteristics Neutral Particle Transport Code, Annals of

Nuclear Energy, Vol. 68, Pages 43-52, 2014.

[3] B. Collins, S. Stimpson, et al., Stability and Accuracy of

3D Neutron Transport Simulations using the 2D/1D Method

in MPACT, Journal of Computational Physics, Vol. 326,

Pages 612-628, 2016.

[4] N. Choi, J. Kang, H. G. Lee, H. G. Joo, Practical

Acceleration of Direct Whole-Core Calculation Employing

Graphics Processing Units, Progress in Nuclear Energy,Vol.

133, 103631, 2021.

[5] H. G. Lee, K. M. Kim, H. G. Joo, Development of

Scalable GPU-Based Direct Whole-Core Depletion

Calculation Methods, Progress in Nuclear Energy, Vol. 165,

104928, 2023.

[6] S. Choi, D. Lee, Three-Dimensional Method of

Characteristics/Diamond-Difference Transport Analysis

Method in STREAM for Whole-core Neutron Transport

Calculation, Computer Physics Communications, Vol. 260,

107332, 2021.

[7] A. Zhang, M. Dai, et.al., Development of A GPU-Based

Three-Dimensional Neutron Transport Code, Annals of

Nuclear Energy, Vol. 174, 109156, 2022.

[8] S. Dzianisau, M. F. Khandaq, T. Q. Tran, D. Lee, On the

GPU Acceleration of a 3D MOC Code STREAM Using

OpenACC, Proceedings of American Nuclear Society

Mathematics & Computation 2023, Niagara Falls, Ontario,

Canada, August 13–17, 2023.

[9] E. E. Lewis, M. A. Smith, N. Tsoulfanidis, G. Palmiotti, T.

A. Taiwo and R. N. Blomquist, Benchmark Specification for

Deterministic 2-D/3-D MOX fuel assembly Transport

Calculations without Spatial Homogenization (C5G7MOX),

NEA/NSC/DOC, 2001.

[10] H. Kim, A. Cherezov, et. al., Multi-Cycle Analysis of

OPR1000 Using Multi-Physics Coupled Codes of RAST-K,

CTF and FRAPCON, Proceedings of American Nuclear

Society Mathematics & Computation 2019, Oregon USA,

August 25-29, 2019.

