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1. Introduction 

 

Method of characteristics (MOC) has become a 

prominent way of finding a deterministic solution for a 

neutron transport equation. Codes that utilize MOC in 

some form, such as nTRACER [1], OpenMOC [2], 

MPACT [3], and others, offer a competitive alternative 

to high-fidelity Monte-Carlo codes while consuming 

less memory and, often, less computational resources.  

Given the recent advancements in graphics card 

(GPU) acceleration of time-consuming and resource-

demanding applications in various fields of science and 

engineering, MOC codes became a desired candidate 

for a similar performance boost. Notable success was 

achieved by the nTRACER developers who ported the 

2D/1D MOC solver to GPU [4], followed by porting 

other time-consuming modules such as the depletion 

module [5]. These results pushed others, including us, 

to develop efficient algorithms for porting our codes to 

GPU. 

In our case, we are interested in enabling GPU 

acceleration for our in-house code STREAM [6]. This 

code, unlike the previously mentioned references, is 

based on a 2D/3D Diamond-Difference MOC solver. 

The advantages of this solver include higher accuracy 

and stability compared to 2D/1D methods, while saving 

substantial amounts of system memory and computing 

resources. Unsurprisingly, other researchers already 

attempted to develop a GPU-enabled code utilizing our 

in-house 2D/3D MOC method [7]. However, this work 

lacks information on the actual speedup offered by 

adding a GPU into the system. This is because a CPU 

version of the code needs to be developed for such a 

comparison, which is not done in this and some other 

cases of publicly presented GPU-enabled codes. 

In this work, we are aiming to share our approach in 

offloading the most time-consuming part of our code 

STREAM to GPU using an OpenACC framework. 

Similar to [4] and [5], we have a CPU-optimized 

version of the code already implemented, which means 

we can demonstrate the actual comparison between the 

CPU and the GPU versions that utilize the same 

methodology, thus making it a fair comparison in terms 

of showing the GPU speedup. The methodology of our 

approach is briefly described in section 2, while the test 

problem results are covered through sections 3 and 4. 

Lastly, the conclusion remarks are presented in section 

5. 

2. Methodology 

 

The first published result of our work on the GPU 

enabling of our code STREAM [8] was based on the 

same code structure as the CPU version, thus offering 

identical results. However, that approach not only was 

impractical due to the lack of GPU-specific 

optimizations, but also was problematic in terms of 

problem scalability. The largest problem presented 

there was the 3D C5G7 problem, which only required 8 

Gb of system memory, thus making it easy to fit into a 

limited GPU memory. However, the real-world 

problems could consume hundreds of Gb of system 

memory, thus making them more challenging to be 

properly offloaded to GPU.  

 

 
Fig. 1. Axial decomposition strategy for offloading the 

2D/3D MOC solver to GPU. 

 

In our current version, we have introduced a novel 

decomposition approach that efficiently reduces the 

occupied GPU memory for any reactor geometry size. 

The approach is schematically shown in Fig. 1 and is 

based on the original code structure inherited from [6] 

and [8], while utilizing the sequential nature of the axial 

loop. As a result, for each plane, a portion of minimally 

required data is transferred from the host side (also 

known as the CPU side) to the device side (known as 

the GPU side) before the planar sweep. After the sweep 

is finished, some data stays on the device, while the 

axially dependent data is copied back to the host for 

storage and future use. The essential data to be copied 
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in and copied out every step includes the incoming and 

outgoing angular fluxes, and neutron current for CMFD 

acceleration.  

 

3. Description of test problems 

 

To determine the performance boost offered by our 

GPU-enabled MOC solver, two problems were chosen. 

The first problem is the 3D C5G7 benchmark problem 

in quarter-core symmetry [8][9]. It uses only 7 neutron 

energy groups and does not have any multi-physics 

feedback. The second problem is a conventional OPR-

1000 3D model [10] simulated in octant-core format to 

save the system memory. The chosen model was 

assembled using gadolinia (Gd) fuel assemblies (FA) 

shown in stripe colors in Fig. 2, and non-Gd FAs shown 

in solid colors. Unlike the C5G7 problem, the OPR-

1000 model was simulated with thermal-hydraulic 

feedback and using all 72 neutron energy groups.  

 

 
Fig. 2. Loading pattern of the modeled reactor in a quarter-

core format (solid colors – UO2 pins only; stripe colors – UO2 

pins and Gd pins; grey frame – radial reflector).  

 

An important difference between the chosen models 

and other GPU-enabled code models such as [5] and [7] 

is the axial mesh size. In STREAM, the axial mesh size 

is 3 cm, resulting in 197 axial planes for the OPR-1000 

problem, and 64 axial planes for C5G7 problem, which 

is higher than in the mentioned publications. This 

choice adds extra fidelity to the code, while the 

downside is the higher system memory requirement. 

 
4. Results and discussion 

 

The presented results were obtained using the 

following configurations. For the CPU reference, a 64-

core system was used (2 AMD EPYC 7543 32-core 

CPUs). For the GPU result, 8 NVIDIA RTX A5000 

were used for the MOC solver, while the remaining 

parts of the code were accelerated using the same 64 

CPU cores. 

First, the 3D C5G7 benchmark execution time for the 

CPU reference and the GPU-enabled code is provided 

in Table 1. The 2D FA powers shown in Fig. 3 are non-

distinguishable, while the effective multiplication factor 

(keff) is identical for both versions. 

 
Table 1. C5G7 performance 

 

Metric CPU GPU Speedup 

MOC Solver, sec 1,368 34 40.23 

Total execution 

time, sec 
1,704 100 17.04 

 

 
Fig. 3. C5G7 2D FA power distribution for the CPU 

reference (left) and the GPU-enabled code (right). 

 

 

 

 
Fig. 4. OPR-1000 2D FA power distribution for the CPU reference (left) and the GPU-enabled code (right). 
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For the OPR-1000 model, the corresponding results 

are presented in Table 2 and Fig. 4. Similar to the C5G7 

problem, the keff value of the GPU version exactly 

matched the CPU reference result. 
 

Table 2. OPR-1000 octant-core performance 

 

Metric CPU GPU Speedup 

MOC Solver, sec 61,535 3,995 15.40 

Total execution 

time, sec 
212,416 11,201 18.96 

 

All in all, the presented results show noticeable 

improvement of the C5G7 model calculation time and 

indicate the memory efficiency of the newly developed 

GPU code. The OPR-1000 octant-core problem requires 

around 1 Tb of system memory for storing all the 

necessary data, which could impose issues for GPU 

code development due to comparably tiny memory 

capacity of consumer-grade GPUs (in our case – 24 Gb 

per card). However, the data splitting method allowed 

our code to reliably fit inside the GPU memory 

regardless of the core geometry size. 

The reason for drastic reduction of the total execution 

time in Table 2 is the communication time between 

radially decomposed regions. In the GPU code, each 

MPI process is assigned a separate GPU. In the CPU 

code, there could be very few OpenMP-enabled CPU 

cores per MPI process. This could create a load 

imbalance between different radial domains and 

increase the waiting times for exchanging the incoming 

and outgoing flux information. The solution for the 

CPU side is to employ more CPU cores, which is 

typically done. However, this is beyond the scope of the 

presented study because our goal is to compare a single 

node performance using the same hardware resources, 

compiler, and working environment.  

 

5. Conclusions 

 

In this study, fresh results on the development of 

GPU-enabled version of 2D/3D MOC code STREAM 

are presented. To overcome the challenges of fitting a 

large commercial PWR problem into a small GPU on-

board memory, a new method of axial decomposition 

was introduced and underwent testing. Two common 

problems were used for the testing purposes, one is the 

C5G7 problem, and the other is an OPR-1000 octant-

core problem that is using all 72 energy groups with 

multi-physics feedback.  

Testing was performed using a single computing 

node consisting of 64 CPU cores and 8 GPU cards. 

Offloading the 2D/3D MOC solver of STREAM onto 

GPUs showed more than 15 times speedup compared to 

the CPU result. Overall, the total execution time of the 

code was also drastically reduced, partially due to using 

only a single computing node for evaluation. Notably, 

the results of calculations stayed identical between the 

CPU and the GPU versions due to using the same 

methodology and directly comparing the CPU version 

of the code to the GPU version of the code. This offers 

important insights on the actual speedup that could be 

achieved by enabling the GPU acceleration in an 

already existing CPU-optimized code. 

Future plans for the GPU-enabled version of 

STREAM include offloading other computationally 

expensive modules to GPU and comparing the codes 

using multiple CPU and GPU nodes. 
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