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1. Introduction 

 
Since the past nuclear accidents, the importance of 

systematic management of severe accidents has gained 

the spotlight. Accordingly, the need to support severe 

accident management using the concept of Accident 

Management Support Tools (AMSTs) has emerged [1]. 

AMSTs aid in the assessment and mitigation of the 

consequences of severe accidents by predicting the 

progression of the accident and presenting possible 

options for the operator’s actions.  

Recent advancements in deep learning have opened 

new avenues for developing the AMST, owing to its fast 

computation speed and its excellent ability to 

comprehend nonlinear relationships of the given data. 

For instance, the leak flow in a loss-of-coolant-accident 

(LOCA) was predicted using a deep fuzzy neural 

network [2]. In another study, the convolutional neural 

network (CNN) was utilized to diagnose the faults under 

various power levels [3]. These studies underscore the 

capability of deep learning to enhance both the predictive 

accuracy and computation speed of the AMSTs. 

However, deep learning is inherently bound to the 

‘model accuracy and explainability trade-off’ problem 

(see Fig. 1). It refers to the AI models’ tendency to lose 

explainability for the price of gaining prediction 

accuracy. Thus, the application of deep learning in 

nuclear safety introduces a new challenge: the need for 

explainability. Explainable Artificial Intelligence (XAI) 

addresses this by ensuring that the predictions made by 

AI models are transparent and understandable to human 

operators. This is crucial in the nuclear domain, where 

the rationale behind every decision must be clear to 

ensure trust and reliability.  

 
Fig. 1. Model accuracy and explainability trade-off. 

 

It is in this background that this paper aims to explore 

the integration of XAI into AMSTs. In this study, a 

model that can predict the progression of a loss-of-

component-cooling-water (LOCCW) accident is 

developed based on an attention mechanism, which is 

one of the XAI techniques. The prediction accuracy and 

the explainability of the proposed model will be assessed 

in comparison with the black box models.  

 

2. Description of the accident dataset 

 

In this section, the accident scenario of interest will be 

discussed. Based on the scenario, the datasets for training 

the models are produced with Modular Accident 

Analysis Program (MAAP) 5.03 code. 

 

2.1 Selection of the Accident Scenario 

 

The focus of the study is on the LOCCW accident in 

the OPR1000 reactor. In the event of a total-LOCCW 

(TLOCCW) accident, simultaneous failure occurs in 

seven safety-related components, as listed in Table I. 

However, this study also explores a subset of TLOCCW 

accidents to test the versatility of the machine learning 

model. It is presumed that the failure of safety 

components obeys a uniform random distribution, except 

the RCP seal LOCA, which is assumed to follow a 

lognormal distribution with around 89.2% of such 

failures happening within the first hour. 
 

Table Ⅰ: List of safety components that fail at TLOCCW 

accident. 
1 Reactor coolant pump (RCP) seal LOCA 

2 Letdown heat exchanger (HX) 

3 High-pressure injection (HPI) pump 

4 Low-pressure injection (LPI) pump 

5 Containment spray system (CSS) pump 

6 Motor-driven auxiliary feedwater (MDAFW) pump 

7 Charging pump (CHP) 

 

Together with component failures, accident mitigation 

strategies are also considered. Three mitigation strategies 

from the severe accident management guidelines 

(SAMGs) were adopted: water injection to the steam 

generator secondary side (M1), depressurization of the 

reactor coolant system (RCS) (M2), and water injection 

to the RCS (M3). These strategies are also assumed to be 

activated randomly in time throughout the 72-hour 

accident.  
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2.2 Dataset production 

 

The MAAP code was utilized to simulate the outlined 

accident scenarios. This code forecasts the evolution of a 

severe accident situation for 72 hours, following the PSA 

mission time. A selection of ten thermal-hydraulic (TH) 

variables, which are observed in the main control room 

(MCR), were identified as key TH variables for analysis, 

as outlined in Table II. These variables serve as crucial 

markers for assessing the integrity of the reactor core and 

determining the conditions for activating the mitigation 

strategies. This results in the creation of a dataset for each 

accident scenario, containing ten time series with a 

length of 72 hours. In total, the MAAP code generated 

12,121 accident scenarios. Subsequently, the data was 

normalized to ensure all values ranged from zero to one. 

 
Table Ⅱ: List of target TH variables 

1 Primary system pressure (PPS) 

2 Cold leg temperature (CLT) 

3 Hot leg temperature (HLT) 

4 Reactor vessel water level (RV WL) 

5 Steam generator pressure (SG P) 

6 Steam generator water level (SG WL) 

7 Maximum core exit temperature (Max CET) 

8 Containment pressure (CTMT P) 

9 Pressurizer water level (PZR WL) 

10 Pressurizer pressure (PZR P) 

 

3. Model development 

 

Following the production of accident datasets, the 

machine learning model is constructed. In this section, 

the architecture of the XAI model and its training and 

testing processes are discussed. 

 

3.1 Description of the XAI model architecture 

 

The ‘attention mechanism’ has been a popular 

technique in computer vision since its highly cited 

publication in 2017 [4]. The attention mechanism allows 

the neural networks to focus on specific parts of the input 

data that are most relevant to the task at hand. It is the 

‘attention weights’ that indicate which part of the input 

data will be weighted more to make an efficient, accurate 

prediction. For instance, in tasks like machine translation, 

the attention weights reveal which words in the source 

language are most relevant to each word in the target 

language, providing insights into the translation process. 

Due to this characteristic, attention-based models are 

often classified as an XAI model [5]. From this 

background, this study adopts the attention mechanism 

to investigate its explainability and performance when 

applied to severe accident prediction. 

This study utilizes the model proposed in the work of 

Y. Qin et al. [6] in particular – the dual-stage attention-

based recurrent neural network (DA-RNN). The 

architecture of the DA-RNN model is depicted in Fig. 2. 

In the first stage, the input attention mechanism 

adaptively extracts the input features at each step by 

referring to the previous encoder's hidden state. At the 

subsequent stage, the temporal attention mechanism 

selects the relevant encoder’s hidden states across all 

time steps. Thus, the feature importance of an input 

feature 𝑖  at time step 𝑡  is reflected in the attention 

weight 𝛼𝑡
𝑖 . The encoder and decoder’s hidden states 

were learned through the long short-term memory 

(LSTM) units. For hyperparameter adjustment, various 

numbers of LSTM units were tested in this study: 8, 16, 

32, 64, 128. 

  
Fig. 2. Architecture of the attention-based XAI model [6]. 

 

The model takes the plant’s state at the previous five-

time steps as an input. One time step consists of the ten 

TH variables (listed in Table Ⅱ), whether the seven 

components fail (1) or not (0) (listed in Table Ⅰ), and 

whether the three SAMG strategies are activated (1) or 

not (0). Based on this input, the model forecasts the TH 

variable at the next time step. Each model is dedicated to 

predicting a single target TH variable, so there are ten 

separate models to be developed (see Fig. 3). 

 

 
Fig. 3. Structure of the model input and output 
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3.2 Training and Test Methods 

 

The datasets are divided into training sets (80%), 

validation sets (10%), and test sets (10%). The training 

set is fed randomly into the XAI models to train the 

models. The training process is stopped when the 

validation loss does not decrease for more than 50 epochs.  

When the training process is completed, the 

performance of the trained model is evaluated using the 

test sets. The prediction accuracy of each model was 

evaluated by calculating the mean absolute error (MAE) 

and root mean squared error (RMSE) over the test dataset. 

 

4. Results and Discussions 

 

4.1 Model Accuracy 

 

  First, the prediction accuracy of the model was 

evaluated through MAE and RMSE values. Fig. 4. shows 

the boxplots of MAE and RMSE as a function of the 

number of nodes in the LSTM, for all target TH variables. 

Usually, the prediction accuracy of a model increases as 

the number of nodes in the LSTM increases. The MAE 

and RMSE tended to decrease as the number of nodes 

increased from 8 to 64, but the degree of improvement 

was not significant. Thus, it was deduced that the number 

of nodes in the LSTM unit did not have a marked 

influence on the attention-based model’s performance. 

 

 
Fig. 4. Comparison of MAE (top) and RMSE (bottom) by the 

number of nodes in the LSTM unit. The circles represent the 

outliers. 

 

However, the model’s performance was significantly 

dependent on the type of the target TH variable. Fig. 5. 

shows the boxplots of MAE and RMSE as a function of 

target TH variables for various numbers of nodes. It was 

found that the type of target TH variable has a significant 

effect on the models’ performance, regardless of the 

number of nodes. The MAE and RMSE values of RV 

WL and Max CET prediction were notably higher than 

the other TH variables, implying the relative difficulty in 

predicting the RV WL and Max CET in LOCCW 

accident scenarios. 

 

 
Fig. 5. Comparison of MAE (top) and RMSE (bottom) by the 

model’s target TH variable. The circles represent the outliers. 

 
The main purpose of this study is to develop a 

predictor model with explanatory power, but the 

prediction accuracy of the model is an important goal that 

cannot be ignored. Hence, it is necessary to compare the 

performance with the black box models in terms of 

prediction accuracy.  

In the previous studies [7, 8], various predictor models 

have been developed that are based on the multi-layer 

perceptron (MLP), convolutional neural network (CNN), 

and long short-term memory (LSTM) architectures. The 

LSTM is an architecture specialized for long-time series 

data processing, thus the LSTM-based model showed 

excellent performance. Therefore, the performances of 

the attention-based model developed in this study and the 

LSTM model are compared. Table Ⅲ compares the 

RMSE values of the LSTM model and the attention-

based model that showed the best performance. The 
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attention-based model that had the lowest MAE and 

RMSE values on average was the one with 128 nodes in 

the LSTM units (N=128). 

 
Table Ⅲ: RMSE of LSTM models and attention-based models 

and their relative differences. 

Target 

variable 

RMSE 

LSTM  
Attention 

(N=128) 

Relative 

difference [%] 

Averaged 1.09E-02 1.63E-02 49.99  

PPS 7.10E-03 1.25E-02 76.61  

CLT 1.09E-02 1.54E-02 40.67  

HLT 1.16E-02 1.60E-02 38.22  

RV WL 2.11E-02 2.90E-02 37.66  

SG P 6.88E-03 9.20E-03 33.77  

SG WL 5.44E-03 8.52E-03 56.55  

Max CET 2.73E-02 3.99E-02 46.38  

CTMT P 2.48E-03 4.01E-03 61.63  

PZR P 8.36E-03 1.40E-02 67.42  

PZR WL 7.62E-03 1.45E-02 90.56  

 

It is observed that the LSTM model had smaller RMSE 

values on average. The increase in the RMSE values of 

the attention model compared to the LSTM model 

implies that the prediction accuracy did not improve by 

employing the attention mechanism. 

 

4.2 Model explainability 

 

To prove that the proposed model is truly explainable, 

it should be shown that the explanations provided by the 

model accord with the phenomenological explanations. 

To do so, the similarity between the attention weights of 

the model and the feature importance of the MAAP data 

should be investigated. Here, feature importance 

represents the importance of an input parameter X for 

predicting a target variable Y.  

In this study, the feature importance of the training 

data (that is, the MAAP dataset) is described using an 

index called ‘mutual information (MI)’. As the TH 

variables of a nuclear power plant are in nonlinear 

relationships, it would be inappropriate to use the 

commonly used correlation coefficients such as Pearson 

and Spearman correlation coefficients. On the other hand, 

MI is a fundamental concept in information theory that 

comprehends the nonlinear relationship within the data. 

MI is defined as the expected value of the pointwise 

mutual information between two random variables 𝑋 

and 𝑌  (Eq. (2)). Hence, it represents the amount of 

information obtained about one random variable by 

observing the other. 

𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦)  log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥∈𝑋𝑦∈𝑌

𝐸𝑞. (1) 

 

The MI values between each target TH variable and 

the input TH variables were calculated. In Fig. 6, they are 

presented as a bar graph together with the attention 

weights. To directly compare with the attention weights, 

the MI values have been normalized so that their sum 

equals unity. The attention weights for each target TH 

variable are represented as a boxplot, as the weights vary 

for models with different numbers of nodes in the LSTM 

unit.  
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Fig. 6. Distribution of attention weights and mutual 

information for target TH variables: PPS, CLT, RV WL, and 

PZR P. The circles represent the outliers. 

 

Taking CLT as an example, the PPS, HLT, and Max 

CET seems to have relatively high importance in its 

prediction. In the physical sense, this is because the cold 

leg, core exit, and hot leg all constitute the primary flow 

together. Furthermore, the temperatures of the primary 

coolant are thermo-physically correlated with its 

pressure (PPS). Thus, it seems obvious that the mutual 

information between the HLT and CLT, Max CET, PPS 

are high, and the attention weights appears to reflect this 

phenomenon well. 

For most target TH variables, the attention weight of 

RV WL was found to be more than twice the value of 

mutual information. In other words, RV WL was used to 

predict specific target variables with more importance 

than necessary. As RV WL took away the large attention 

weight, the degree of contribution of CTMT P was 

reduced. This effect was noticeable in the prediction of 

PPS and PZR P. However, considering that the 

prediction accuracy of PPS and PZR P is not lower than 

that of other variables (refer to Table Ⅲ), it is difficult to 

say that this effect has a significant influence on the 

performance of the model.  

 

4.3 Similarity between attention weights and mutual 

information 

 

In the previous section, attention weight and mutual 

information were calculated as indicators for feature 

importance used to predict a specific target TH variable. 

To prove that the attention weight of the attention-based 

model reflects the phenomenological explanation, it 

must be shown that the distributions of the attention 

weight and mutual information are similar. A commonly 

used indicator to show similarity between the two rank 

matrices is ‘cosine similarity’. Here, cosine similarity (𝑆𝐶) 

is estimated to measure the similarity between the mutual 

information matrix (𝑀𝐼) obtained from the MAAP data 

and the attention weight matrix (𝐴𝑡𝑡) obtained through 

the model training (see Eq. (2)). The more similar the two 

rank matrices are to each other, the closer the cosine 

similarity will be to 1. 

𝑆𝐶(𝑀𝐼, 𝐴𝑡𝑡) =
〈𝑀𝐼, 𝐴𝑡𝑡〉𝐹

‖𝑀𝐼‖𝐹  ‖𝐴𝑡𝑡‖𝐹

 𝐸𝑞. (2) 

 

Fig. 7. is a boxplot graph showing the calculated 𝑆𝐶  

values for each target TH variable. Since the attention 

weight is different according to the model’s number of 

nodes, the cosine similarity was also different according 

to the model, so it was described in the form of a boxplot 

to show the distribution.  

 

 
Fig. 7. Cosine similarity between attention weights and mutual 

information. 

 

It is observed that the cosine similarities of all models 

fell in the range of 0.77 to 0.98 in all models. Thus, it can 

be interpreted that the proposed model learns the feature 

importance of the training data and embodies it as a form 

of attention weight. Especially for PPS, CLT, HLT, RV 

WL, and Max CET, the cosine similarity of all models 

was higher than 0.9, showing an evident potential for 

model explainability. 

It was also investigated whether the model’s 

performance is improved if the attention weight and 

mutual information are similar. Looking at RV WL and 

Max CET, which had the worst prediction performance, 

the cosine similarity is always higher than 0.9. In other 

words, even if the attention weight of the model is well 

explained in phenomenological terms, the prediction 

accuracy of the model may not improve. The following 

two reasons can be considered for this. 

First, it is the characteristics of the data itself. In the 

previous studies where the traditional black box models 

were considered [7, 8], the prediction accuracies of RV 

WL and Max CET were also notably lower than those of 

other variables. Thus, it is expected that the RV WL and 

Max CET have characteristics that are difficult to learn 

by machine learning. 

The second reason stems from the ‘model accuracy 

and explainability trade-off’. As mentioned earlier, the 

better the explainability of the model, the lower the 

prediction accuracy of the model tends to be. Based on 

this concept, it is understood to some extent that the 

attention weight in the model predicting Max CET or RV 

WL has high explainability by reflecting the mutual 

information well, but the prediction accuracy is rather 

poor. Through this, searching for a balance between 

accuracy and explainability seems to be an essential 

component in developing an XAI for nuclear safety. 

 

5. Conclusions and Further Works 

 

In this study, a model that can predict the progression 

of a LOCCW accident was developed using the concept 

of explainable AI. The main conclusions of this study can 

be summarized as follows. 
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⚫ By employing an attention-based architecture, deep 

learning models have the potential to be 

explainable for their predictions. 

⚫ Attention-based models do not show a noticeable 

improvement in prediction accuracy compared to 

traditional black box models (LSTM), but they still 

have a reasonable accuracy. 

⚫ In other words, it is possible to develop an AI-based 

AMST predictor model with both explainability 

and high accuracy. Such potential is expected to 

serve as a lubricant in applying AI models to severe 

accident management. 

Future research will explore strategies to enhance the 

predictive accuracy without compromising the model’s 

interpretability. This approach aims to achieve a balance 

between the explainability and accuracy of the XAI 

model. Also, the potential of applying other XAI 

techniques to predict severe accidents will be assessed.  

This study used ten thermal hydraulic variables that 

are observable at the MCR as the input variables. It is 

expected that the performance of the model can be 

improved by adding more MCR monitoring variables. 
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