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1. Introduction 

 
Static probabilistic safety assessment (PSA) has been 

widely used to quantify risk in nuclear power plants. 

Dynamic PSA has also been proposed to complement 

static PSA. Dynamic PSA is a study that analyzes time 

variables that are conservatively assumed in static PSA 

[1], and results are obtained by simulating a nuclear 

power plant using system code [2]. Because it utilizes 

time variables, dynamic PSA has been conducted as a 

phenomena-oriented study instead of quantification such 

as core damage frequency [3]. Even when quantification 

is performed, results are approximated, and assumptions 

are made about time variables in the quantification [4]. 

Dynamic PSA plays the role of complementing static 

PSA by suggesting more realistic conservative 

assumptions applied in static PSA, or by complementing 

and verifying static PSA. Therefore, in this paper, we 

propose a dynamic PSA, a quantification framework that 

utilizes time variables.  

 

2. Methods 

 

2.1 Concept of Quantification 

 

Summation of success probability and failure 

probability of an event or component is 1. That means 

there are 2 kinds of possible state of the component or 

events we consider. At this point, we divide possible 

failure state over time. The state of a component could 

be divided success and failure and then the failure state 

is divided over time. For example, we can consider a 

running failure event of emergency diesel generator 

(EDG) and the failure state is split over running failure 

time as shown in Figure 1. Thus, summation of every 

probability of failure state is 1 and they can represent 

running failure probabilities over time. 

 

 

Figure 1 Quantification scheme for DPSA using AIMS-

PSA  

 

𝐹(𝑡𝑖𝑚𝑒𝑟𝑢𝑛) = 𝐹(𝑟𝑢𝑛) ∗ 𝐹(𝑡𝑖𝑚𝑒) 

 
𝑤ℎ𝑒𝑛 

𝐹(𝑟𝑢𝑛) = 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

𝐹(𝑡𝑖𝑚𝑒) = 𝑑𝑖𝑣𝑖𝑑𝑒𝑑 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑡𝑖𝑚𝑒  

 

As above equations, a 2-hour running failure 

probability of EDG can be represented by  

 

𝐹(2ℎ𝑟𝑢𝑛) = 𝐹(𝑟𝑢𝑛) ∗ 𝐹(2ℎ) 

 

Moreover, below equations show the concept of 

quantification of this paper briefly. 

 

𝐹(𝑟𝑢𝑛) + 𝑆(𝑟𝑢𝑛) = 1 

∑ 𝐹(𝑡𝑖𝑚𝑒) = 1 

∑{𝐹(𝑟𝑢𝑛) ∗ 𝐹(𝑡𝑖𝑚𝑒)} + 𝑆(𝑟𝑢𝑛) = 1 

 

𝑤ℎ𝑒𝑛 

𝑆(𝑟𝑢𝑛) = 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

 

2.2 Dynamic PSA and their results 

 

Before describing the detailed quantification method, 

we should mention how we can get dynamic PSA result 

for the quantification. We use Deep-SAILS algorithm 

that is an optimization algorithm searching a limit 

surface [5]. With the algorithm, a bunch of NPP 

simulations using a system code MAAP 5 are calculated 

6], and the criteria of core damage or not is found 
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effectively. In that process, we can set time variable to 

the input variable in the simulation. Thus, scenarios of 

the simulation consist of time variety are decided as core 

damage or not. With these scenario information, 

conditional core damage probability is deduced. 

 

2.3 Process 

 

Below sequential explanations show detailed 

methodology of the framework. 

 

I. Calculate of reliability data over time. 

 

This step describes how to draw reliability data 

over time. Main significance of this step is 

reasonable outcome. Thus, we consider an 

industry-average performance data as basis 

data of reliability [7]. From the data, there is 

information about failure time. For example, 

EDG has total 327 failures during running, and 

the failures are sorted by 172 failures before 1 

hour and 155 failures after 1 hour. Using the 

information, with random sampling, we can 

deduce failure distribution over time as shown 

in Figure 2. As the example, the reliability 

distribution over time can be drawn with 

reasonable experimental data. 

 

II. Divide variable sections over time data. 

 

In this step, we decide the fineness of input 

data. That means how many bins in the 

reliability data distribution you will consider. 

 

III. Calculate the probability of sections. 

 

With the reliability distribution over time, we 

do integration following the sections (bins). 

 

IV. Calculate the probability of scenarios – 

expending the result of simulations. 

 

Every scenario we considered consists of a 

combination of events. Thus, every event has 

their own reliability distribution, and every bin 

of the distribution over time is granted 

probability. Using them, the scenarios could be 

quantified as mentioned in 2.1 concept of 

quantification. Of course, including limit 

surface, every scenario in the domain should 

be considered. 

 

V. Calculate the probability of sequences. 

 

Conjugating the simulation results, the core 

damage scenarios are considered to deduce 

CCDP of the sequence. 

 

 

 
Figure 2 Reliability data over time using random sampling. 

 

3. Case study 

 

3.1 Scenario analysis and simulation 

 

An initiating event we considered is station black out 

(SBO). Loss of offsite power occurs, and EDG starts to 

run but it cannot contribute to enter shutdown cooling 

condition. Thus, turbine-driven auxiliary feed water 

pump (AF-TDP) supplies feed water to steam generator. 

For the 2 components, we considered running failure for 

accident mitigation scenarios. Thus, different running 

failure time is applied to different scenario. To mitigate 

the initiating event, offsite power should be restored. 

Thus, we consider the time of offsite power recovery.  

An alternative AC diesel generator (AAC-DG), 

mobile DG are not considered in this case. With the AF-

TDP, air-dump valve in steam generator operation does 

not have any variation. It simulated with identified logic. 

For the simulations, MAAP 5 is adopted.  

 

 

 
Figure 3 Simulation results with Deep-SAILS 

 

 

With the algorithm, system code calculations are done 

with 5.63 % efficiency. That means the entire domain has 

114,868 scenarios, and we found the limit surface with 

6,473 scenario simulations. As shown in Figure 3, the 

simulation represents the success criteria of the 

sequences.  
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Figure 4 Accident sequences within SBO 

 

The event tree in Figure 4 explains the area of domain 

into the sequences. The sequence to core damage is 

matched with the area C. The area A means OK scenarios 

regardless of recovery time. Lastly, the area B shows OK 

scenarios with suitable offsite recovery time. 

 

3.2 Quantification 

 

To deduce CCDP, we employed reliability data from 

reference [8]. In detail, offsite recovery data is from 

experimental data. That means how long does it take in 

history. With the procedure represented in 2.3 Process, 

the quantification of SBO taking into account running 

failure time is deduced. 

 

3.3 Result 

 

CCDP of SBO is 7.26E-06. Because we only 

considered EDG, AF-TDP, and offsite recovery, the 

CCDP might be overestimated. However, like Table 1, 

comparison with static PSA was done. The ratio of 

dynamic CCDP and static CCDP is 1.2 %. and it shows 

static PSA is quite conservative. 

 

Table 1 Conditional core damage probabilities 

 Dynamic PSA Static PSA 

CCDP 7.26E-06 5.98E-04 

 

 

4. Conclusions 

 

In this paper, we show how to quantify the dynamic PSA 

and derive the CCDP of SBO using reasonable reliability 

data along with an algorithm to find the limit surface. 

This means that we have attempted to quantify the time 

variable that is difficult to apply, and since it is based on 

experimental data from an existing operating nuclear 

power plant, it can be applied to more complex initiating 

events and sequences in the future. It is hoped that this 

will make dynamic PSA more widely used, and that it 

will also be used to complement and validate static PSA.  
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