Numerical Modeling of Concrete Microstructure with Poly-mineral Aggregate using Image-based Analysis

Hyeong-Tae Kim, PhD

Kyoungsoo Partk, PhD

November 6, 2023

Computational & Experimental Mechanics Group School of Civil & Environmental Engineering Yonsei University, Seoul, Korea

Motivation

Concrete degradation by neutron

Shin Kori, Nuclear Power Plants, IAEA Image bank

Maruyama, I., Kontani, O., Takizawa, M., Sawada, S., Ishikawao, S., Yasukouchi, J., ... & Igari, T. (2017). Development of soundness assessment procedure for concrete members affected by neutron and gamma-ray irradiation. *Journal of Advanced Concrete Technology*, *15*(9), 440-523.

Radiation effects on the aggregate

• Le Pape, Y., Alsaid, M. H., & Giorla, A. B. (2018). Rockforming minerals radiation-induced volumetric expansion– revisiting literature data. Journal of Advanced Concrete Technology, 16(5), 191-209.

November 6, 2023

Motivation

Microstructure Reconstruction

- Image Acquisition and Segmentation
- Mesh Generation Based on the Image
 - Microstructure and Polygonal Mesh Generation

Numerical Example

Radiation Induced Volume Expansion

Summary

Image Acquisition

Concrete Specimen

Mixing Design

	Mix component	Density (kg/m ³)	Volume (m ³)
Portland Ce	ement [CEM I 42.5 R]	3.1	137.1
Water		1	166.0
Aggregate	Quartz [석영] 0~2 mm	2.65	198.1
	Gabbro [반려암] 2~8 mm	2.94	448.0
Admixture	Plasticizer	1.04	2.8
	Air entraining agent	1.05	0.7

Size

Specimen : 20 x 20 x 80 mm (Cut)

- Dąbrowski, M., Glinicki, M. A., Dziedzic, K., & Antolik, A. (2019). Validation of sequential pressure method for evaluation of the content of microvoids in air entrained concrete. Construction and Building Materials, 227, 116633.
- Jóźwiak-Niedźwiedzka, D., Antolik, A., Dziedzic, K., Glinicki, M. A., & Gibas, K. (2019). Resistance of selected aggregates from igneous rocks to alkali-silica reaction: verification. *Roads and Bridges-Drogi i Mosty*, *18*(1), 67-83.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Image Segmentation

X-ray CT (Depend on the material density)

Image Segmentation : Otsu method

 $\rho_{Quartz} = 2.67 \text{ g/cm}^3$ (Howie et al. 1992)

 $\rho_{C-S-H} = 2.604 \text{ g/cm}^3$ (Allen et al. 2007)

Neutron CT (Depend on the hydrogen components)

Image Segmentation : Otsu method

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Microstructure Reconstruction

H.T. Kim, D.F.T. Razakamandimby, V. Szilagyi, K. Zoltan, L. Szentmiklosi, M.A. Glinicki, and K. Park, 2021 Reconstruction of concrete microstructure using complementarity of X-ray and neutron tomography, Cement and Concrete Research 148, 106540

November 6, 2023

Ô

Microstructure Reconstruction

Particle size = $\frac{1}{180} \sum_{i=1}^{180} d_{feret}(\theta_i)$

Quartz [석영]

- 1. Pure mineral particle
- 2. Particle size = 0~2mm

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

3

Mesh Generation Based on the Image

- <u>Kim, H. T., & Park, K</u>. 2022. Computed Tomography (CT) Image-based Analysis of Concrete Microstructure using Virtual Element Method. *Composite Structures*, 115937.
- Talischi, C., Paulino, G. H., Pereira, A., & Menezes, I. F. M. (2012). PolyMesher: A general-purpose mesh generator for polygonal elements written in Matlab. Structural and Multidisciplinary Optimization, 45(3), 309–328

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Microstructure Mesh Generation

Microstructure acquisition

 200×200 pixel , Poly-mineral

Edge Detection

Edge Type : Combination of Material

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

Microstructure Mesh Generation

Polygonal Mesh Generation

Integration with Microstructure and Homogeneous Mesh

- 1. Create the intersection nodes
- 2. Split the edges by new nodes
- 3. Divided the elements based on the mesh data
- 4. Check the element positing assemble the hole inside

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Kim, H. T., & Park, K. 2022. Computed Tomography (CT) Image-based Analysis of Concrete Microstructure using Virtual Element Method. *Composite Structures*, 115937.

Numerical Examples

Domain size : 1232 x 1232 pixels Radiation : $10^{18} \sim 2 \times 10^{21} n/cm^2$ Plane strain condition Initial strain : $\varepsilon_{in} = [\varepsilon_V/2 \quad \varepsilon_V/2 \quad 0]^T$ Aggregate Type

: poly-mineral vs homogeneous

$$a_{homogeneous} = \sum \frac{V_i}{V_{homogeneous}} a_i$$

	석영(<mark>Qz</mark>)	사장석(PI)	휘석(Px)	각람석(<mark>hbl</mark>)	골재(Homo)	페이스트(Paste)
E(MPa)	94.73	94.90	88.94	141.14	104.93	20.00
ν	0.0869	0.2786	0.3489	0.2424	0.2392	0.2000

Radiation Induced Volume Expansion

Fitting equation : Zubov and Ivanov'S sigmoidal model with linear temperature

$$\varepsilon_{\rm V}(\Phi,T) = \varepsilon_{max} \frac{1 - e^{-\frac{\Phi}{\Phi_c}}}{1 + e^{-\frac{\Phi-\Phi_T}{\Phi_c}}}$$

characteristic fluence $[\Phi_c, n/pm^2]$ Latency fluence $[\Phi_L, n/pm^2]$

Fluence of neutron radiation (n/cm^2)

[1] Le Pape, Y., Alsaid, M. H., & Giorla, A. B. (2018). Rock-forming minerals radiation-induced volumetric expansion–revisiting literature data. Journal of Advanced Concrete Technology, 16(5), 191-209.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Result

[1] Jing, Y., & Xi, Y. (2017). Theoretical Modeling of the Effects of Neutron Irradiation on Properties of Concrete. *Journal of Engineering Mechanics*, 143(12), 04017137.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Result

Radiation = $5 \times 10^{20} n/cm^2$ Maximum Principal Strain Homogeneous Poly-mineral 0.08 0.05 0 -0.05 -0.1 $\Delta \varepsilon = -0.0291 \sim 0.0517$ $\Delta \varepsilon = -0.1124 \sim 0.1075$

(Scale factor = 5)

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

 $\textcircled{\textcircled{}}$

Summary

- D X-ray와 Neutron CT의 상호보완성과 mineral들의 특성을 이용하면 미세구조 내부의 mineral들의 분포에 대해 판별이 가능하다.
- 제안한 수치해석 모델 방법을 사용해 이미지만을 이용하여
 복잡한 구조에 대해 다각형 요소로 해석에 요구되는 정확도
 수준에 따른 이산화가 가능하다.
- 고 수치해석을 통해 얻은 중성자 조사량에 따른 콘크리트 팽창은 실험데이터와 유사한 경향성을 보인다.
- 고 골재에 대해 각 mineral별로 구분하여 해석을 수행한 결과는 homogeneous로 가정한 경우에 비해서 전체 부피 팽창률은 거의 동일한 결과를 보이지만 국부적인 영역에서 발생하는 변형과 예측되는 손상에 있어서 큰 차이를 나타낸다.

Question and Answer

Thank you

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

Rock-forming Minerals on the Aggregate

- Fine Aggregate : Quartz Sand [Quartz \cong 98%]
- Coarse Aggregate : Gabbro [Plagioclase, Pyroxene, Olivine, Hornblende]

- Allaby, Michael (2013). "gabbro". A dictionary of geology and earth sciences (Fourth ed.). Oxford: Oxford University Press
- Dąbrowski, M., Glinicki, M. A., Dziedzic, K., & Antolik, A. (2019). Validation of sequential pressure method for evaluation of the content of microvoids in air entrained concrete. Construction and Building Materials, 227, 116633.

November 6, 2023

18 🛞

3D Concrete Microstructure

H.T. Kim, D.F.T. Razakamandimby, V. Szilagyi, K. Zoltan, L. Szentmiklosi, M.A. Glinicki, and K. Park, 2021 Reconstruction of concrete microstructure using complementarity of X-ray and neutron tomography, Cement and Concrete Research 148, 106540

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Combined x-ray & neutron image

November 6, 2023

Computational & Experimental Hyeongtae Kim (shape1729@yonsei.ac.kr) **Mechanics Group**

Morphological Filtering

21

Verification

□ Microstructure

Volume Fraction

Mesh Generation based on the Image

Microstructure

Kim, H. T., & Park, K. 2022. Computed Tomography (CT) Image-based Analysis of Concrete Microstructure using Virtual Element Method. Composite Structures, 115937.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Virtual Element Formulation

Governing Equation

$$\int_{\Omega} \boldsymbol{\epsilon}(\boldsymbol{u}) : \boldsymbol{\sigma}(\boldsymbol{\nu}) \, d\mathbf{x} = \int_{\partial \Omega} \boldsymbol{\nu} \cdot \mathbf{t} \, d\mathbf{x} \quad \forall \boldsymbol{\nu} \in \mathcal{K}_0$$

Preliminary Space

$$\widetilde{\mathcal{V}}(F) = \left\{ v_h \in \mathcal{H}^1(F) : \Delta v_h \in \mathcal{P}_1(F) \text{ in } F, v_{h|e} \in \mathcal{P}_1(e) \ \forall e \in \partial F \right\}$$

□ First Projection by Projection Operator $\int_{E} \Pi^{0} \nabla \phi_{i} \cdot \mathbf{m}_{\alpha} \, d\mathbf{x} = \sum S_{i\beta} \int_{E} \mathbf{m}_{\beta} \cdot \mathbf{m}_{\alpha} \, d\mathbf{x} = \int_{\partial E} \phi_{i} \mathbf{m}_{i} \cdot \mathbf{n} \, d\mathbf{s} - \int_{E} \phi_{i} \operatorname{div} \mathbf{m}_{i} \, d\mathbf{x}$

□ **Projection of Displacement** $\int_{E} (\Pi^{0} v_{h}) p \, d\mathbf{x} = \int_{E} v_{h} p \, d\mathbf{x} \quad \forall p \in \mathcal{P}(E)$ $p = \sum a_{i} \cdot m_{i} \ m_{1} = 1, \ m_{2} = \left(\frac{x - x_{c}}{h_{2}}\right), \ m_{3} = \left(\frac{y - y_{c}}{h_{2}}\right)$

Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A, 2013, Basic principles of virtual element methods. *Mathematical Models and Methods in Applied Sciences*, 23(1), 199-214.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Mechanics Grou

L² Projection Operator

Projection of Displacement

$$\int_{E} (\Pi_{1}^{0} v_{h}) p_{1} d\mathbf{x} = \int_{E} v_{h} p_{1} d\mathbf{x} \quad \forall p_{1} \in \mathcal{P}_{1}(E)$$

$$p_{1} = \sum_{\alpha=1}^{n_{p_{1}}} \alpha_{\alpha} m_{\alpha} \qquad m_{1} = 1, \ m_{2} = \frac{x - x_{c}}{h_{P}}, \ m_{3} = \frac{y - y_{c}}{h_{P}}, \ m_{4} = \frac{z - z_{c}}{h_{P}}$$

Projection of Strain

$$\int_{E} (\Pi_{0}^{0} \nabla v_{h}) \cdot \mathbf{p}_{0} \, d\mathbf{x} = \int_{E} \nabla v_{h} \cdot \mathbf{p}_{0} \, d\mathbf{x} \quad \forall \mathbf{p}_{0} \in [\mathcal{P}_{0}(E)]^{2}$$
$$\mathbf{p}_{0} = \sum_{\alpha=1}^{n_{\mathbf{p}_{0}}} a_{\alpha} \mathbf{m}_{\alpha} \qquad \mathbf{m}_{1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{m}_{2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{m}_{3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
$$\int_{E} \Pi_{0}^{0} (\nabla v_{h}) \cdot \mathbf{p}_{0} \, d\mathbf{x} = \int_{\partial E} v_{h} \mathbf{p}_{0} \, d\mathbf{x} - \int_{E} v_{h} \operatorname{div}(\mathbf{p}_{0}) \, d\mathbf{x}$$

November 6, 2023

Construction of Stiffness Matrix

Element Stiffness Matrix

$$\mathbf{K}_{E,s} = \overline{\mathbf{K}}_{E,s} \otimes \mathbf{I}_d$$

$$\overline{\mathbf{K}}_{E,s} = (\mathbf{I}_n - \mathbf{P}_1^0)^T \mathbf{\Lambda} (\mathbf{I}_n - \mathbf{P}_1^0)$$

K. Park, H. Chi, and G.H. Paulino, 2020, Numerical recipes on virtual element method for elasto-dynamic explicit time integration, International Journal for Numerical Methods in Engineering 121, 1-31

November 6, 2023

VEM vs FEM

 $\textcircled{\textcircled{}}$ 27

Material Properties

Young's Modulus

Poisson's Ratio

Result

Concrete volume change

November 6, 2023

29

 $\textcircled{\textcircled{}}$

Result

Concrete volume change

Poly Mineral Aggregate
Pure Quartz Aggregate
Pure Plagioclase Aggregate
Pure Pyroxene Aggregate
Pure Hornblende Aggregate

[1] Le Pape, Y., Giorla, A., & Sanahuja, J. (2016). Combined effects of temperature and irradiation on concrete damage. *Journal of Advanced Concrete Technology*, 14(3), 70-86.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Numerical Examples

t = 1mm

Domain size : 1232 x 1232 pixels Temperature : 25, 100, 200 Radiation : $10^{18} \sim 2 \times 10^{21} n/cm^2$ Plane strain condition Initial strain : $\boldsymbol{\varepsilon}_{in} = [\varepsilon_V/2 \quad \varepsilon_V/2 \quad 0]^T$

	석영(<mark>Qz</mark>)	사장석(PI)	휘석(Px)	각람석(<mark>hbl</mark>)	페이스트 (Paste)
E(MPa)	94.73	94.90	88.94	141.14	20.00
v	0.0869	0.2786	0.3489	0.2424	0.2000

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Radiation Induced Volume Expansion

Fitting equation : Zubov and Ivanov'S sigmoidal model with linear temperature... [1]

 $\varepsilon_{\rm V}(\Phi,T) = \varepsilon_{max} \frac{1 - e^{-\frac{\Phi}{\Phi_c}}}{1 + e^{-\frac{\Phi-\Phi}{\Phi_c}}}$

 $\begin{array}{l} -e^{-\frac{\Phi}{\Phi_c}} & \text{characteristic fluence } [\Phi_c, n/pm^2] \\ \hline -\frac{\Phi-\Phi_L}{2} & \text{Latency fluence } [\Phi_L, n/pm^2] \end{array} \quad \Phi_i = a_i T + b_i \end{array}$

 [1] Le Pape, Y., Alsaid, M. H., & Giorla, A. B. (2018). Rock-forming minerals radiation-induced volumetric expansion-revisiting literature data. Journal of Advanced Concrete Technology, 16(5), 191-209.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

 (\mathfrak{R})

Result : Concrete Volume Change

Concrete volume change

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr) Computational & Experimental Mechanics Group

 (\mathfrak{A})

Result : Effects on the Temperature

Concrete volume change

H = 40

Temperature = 25, 100, 200

Poly mineral Aggregate

[1] Le Pape, Y., Giorla, A., & Sanahuja, J. (2016). Combined effects of temperature and irradiation on concrete damage. *Journal of Advanced Concrete Technology*, *14*(3), 70-86.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

Result : Effects on the Mineral Component

Concrete volume change

[1] Le Pape, Y., Giorla, A., & Sanahuja, J. (2016). Combined effects of temperature and irradiation on concrete damage. *Journal of Advanced Concrete Technology*, *14*(3), 70-86.

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Result : Effects on the homogenization

Maximum principal strain (Scale factor = 5)

H = 40 , Temperature = 25 , Radiation = $5 \times 10^{20} n/cm^2$

November 6, 2023

Computational & Experimental Hyeongtae Kim (shape1729@yonsei.ac.kr) **Mechanics Group**

Result : Effects on the homogenization

Concrete volume change H = 40, Temperature = 25

November 6, 2023

Hyeongtae Kim (shape1729@yonsei.ac.kr)

Computational & Experimental Mechanics Group

()